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Abstract

While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to
identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed
RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila
genome using RNA-interference (RNAi) on primary neural cells and present the results of the first full-genome RNAi screen
in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of
fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome
screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have
morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in
the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical
significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated
by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis
revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories
including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to
be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein
trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons,
respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo
phenotypes, and the screening technique can be used to identify many new genes that have important functions in the
nervous system.
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Introduction

Many genes required for neurodevelopment have been

identified as a result of large-scale genetic screening in Drosophila.

It has been a choice model in neurogenetics since it has significant

gene homology and anatomical similarity to vertebrates and the

tools available for genetic manipulation are advanced. Recently,

RNA-interference (RNAi) has provided an important new tool for

genetic analysis since it can efficiently knock down gene expression

within the Drosophila nervous system to replicate genetic hypo-

morphic and null mutant phenotypes [1,2]. In Drosophila, RNAi is

mediated by the introduction of long double stranded RNAs

(dsRNAs). The internalized dsRNAs are processed into 21- to 23-

nucleotide segments by Dicer and are incorporated into RISC

protein complexes for degradation of mRNA transcripts [3,4]. In

simple model organisms such as C. elegans and Drosophila, RNAi

analysis has been applied to the entire genome [5]. In addition, the

use of cell-based RNAi assays enable genome-wide screens to be

carried out in a high-throughput manner [6]. However, these

high-throughput screening methods have been inaccessible to

address questions in neurons due to the lack of appropriate cell

lines that retain neuronal morphology, gene expression profiles,

and electrophysiological activity. Thus to carry out a full genome

analysis of neural development, we have adapted methods for

RNAi screening by using Drosophila primary neural cultures and

live-cell imaging.

A major advantage of using RNAi on primary cultures is that

pleiotropic genes can be identified. Most genes have complex

expression profiles that are not restricted to a single tissue type,

and that can also include mRNAs that are maternally deposited

into the egg. The primary cell culture method we present here

isolates wild-type neuroblasts that are subsequently treated with
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RNAi, thus secondary cell defects due to disruption of tissues that

form prior to neurogenesis can be avoided. In this way, primary

neural culture RNAi could offer great potential to identify

interesting novel genes that would be much more difficult to find

using traditional screening methods.

Here we present the results from the first genome-wide RNAi

analysis of live, fluorescently labeled primary neural cells for

their effects on neural outgrowth and morphology. Through

successive rounds of experimental replication, we identified 104

evolutionarily conserved genes that we implicate in neural

development and function. For the phenotypic analysis, we

developed computational image analysis methods that quantify

specific morphological features of the cells. The statistical

analysis can aid in the prediction of gene functions based on

comparison of RNAi-induced phenotypic profiles of unknown

genes to profiles that represent genes with known functions. To

explore whether in vitro RNAi phenotypes from the genome-wide

screen show analogous phenotypes in vivo and across species, we

chose two genes involved in the protein trafficking category for

further analysis. We found that Sec61a and Ran GTPase showed

similar phenotypes in Drosophila embryos and embryonic mouse

cortical neuron explants respectively. Both genes have complex

expression patterns, and are important genes in human

neurological disease pathways [7,8]. The work thus demonstrates

the advantages of using full-genome RNAi in Drosophila primary

neural cells as a tool to gain novel insights into gene functions in

the nervous system.

Results

Generation of Primary Neurons for RNAi
The characteristics of primary neuronal cultures generated from

gastrula stage Drosophila embryos have been well characterized and

their development mirrors the phases of proliferation, differenti-

ation, outgrowth and mature physiological function in the intact

organism. Primary neurons develop from neuroblasts that give rise

to clusters of approximately 16 daughter cells [9,10]. The neuronal

clusters form miniature ganglia organized with neuronal cell

bodies surrounding a central neuropil that contains high levels of

presynaptic proteins [11–13]. Primary neurons can be either uni-

or multipolar, and they extend microtubule-rich axons out of the

cell clusters using growth cones bearing filopodia and lamellipodia

[13–16]. The axons terminate on neighboring ganglia and

contractile muscle fibers to form neural networks [11,17]. In

addition, glial cells either remain within the ganglia or extend

along and wrap the axonal projections [10,13,18]. Axons

terminating on muscles develop neuromuscular junctions, which

show ultrastructural specializations typical of synapses, including

synaptic vesicles and electron dense material bridging regions of

the synaptic cleft [10]. The synapses of the primary neurons are

electrophysiologically active and Na+-driven action potentials can

be blocked by tetrodotoxin [10,13,19,20].

The composition of neuronal types within primary cultures

derived from gastrula stage embryos has been determined using

immunostaining of molecular markers. Primary Drosophila neurons

are Elav- and HRP-positive, and the subsets of motor and sensory

neurons express Fasciclin II and Futsch respectively [13,16]. Other

markers, such as Neuroglian, Even-skipped are expressed by

primary neurons, and glia are Repo-positive [13,16]. Together,

the morphological, physiological, and molecular characterizations

demonstrate that primary neurons and glia retain a great number

of characteristics from the in vivo situation, and thus make a very

appropriate system for high-throughput functional genomics

applications such as RNAi.

To carry out a full-genome RNAi screen for neural outgrowth

and morphology, we developed methods to generate large-scale

cultures of green fluorescent protein (GFP) -labeled primary

neurons and glia from gastrula stage embryos. In addition,

RNAi techniques were modified for higher efficacy on primary

cells within a 384-well plate screening format. It has been

demonstrated that RNAi knockdowns can replicate neuronal

mutant phenotypes in Drosophila embryos [21,22], and that RNAi

can effectively knock down specific genes in vertebrate cultured

neurons [23]. We also demonstrated that RNAi can significantly

knock down gene expression in Drosophila primary neurons. For

example, cultures treated with Neuroglian dsRNA had greatly

reduced immunolabeling with anti-Neuroglian as compared to

controls (Figure S1). In addition, we demonstrated that the

RNAi assay can produce repeatable phenotypes within the

networks of dissociated cells using positive controls that were

expected to affect outgrowth in neurons. For example, by

knocking down the cytoskeletal proteins Actin and beta-Tubulin,

we demonstrated that the RNAi outgrowth phenotypes were

consistent, robust, and stereotyped amongst independent cell

culture preparations and amongst repeated wells within the same

culture preparation (Figure S2A–C). Importantly, the phenotype

characteristics were distinctive depending on which gene was

targeted for knockdown, with sinuous axon trajectories in Actin

knockdowns versus markedly reduced axon lengths in the beta-

Tubulin RNAi cultures. Thus RNAi-induced phenotypes can

result in significant visible morphological defects that are

reproducible in primary neural cells.

For screening assay optimization, we performed pilot tests using

a small collection of dsRNAs. Wild-type and negative control

cultures had a stereotypic morphology, characterized by cell body

clusters interconnected by well-fasciculated axonal tracts

(Figure 1A). In contrast, a selection of the pilot test dsRNAs

caused a variety of morphological defects associated with axonal

tracts. For example, dsRNAs for hydrogen-transporting ATPase

VhaAC39 and novel gene CG14883 caused excessive branching,

blebbing, and defasciculation as well as disruption of cell cluster

sizes (Figure 1B–D). Our observations supported previous analyses

of primary neurons which showed that healthy cultured Drosophila

neurons are well-fasciculated, while neurons disrupted by

mutation or chemical treatments show branching abnormality,

reduced axon lengths, and varicosities [13,14,16,17].

Author Summary

Development and function of the brain requires the
coordinated action of thousands of genes, and currently
we understand the roles of only a small fraction of them.
Recent advances in genomics, such as the sequencing of
entire genomes and the discovery of RNA-interference as a
means of testing the effects of gene loss, have opened up
the possibility to systematically analyze the function of all
known and predicted genes in an organism. Until now, this
type of functional genomics approach has not been
applied to the study of very complex cells, such as the
brain’s neurons, on a full-genome scale. In this work, we
developed techniques to test all genes, one by one in a
rapid manner, for their potential role in neuronal
development using neurons isolated from fruit fly embry-
os. These results yielded a global perspective of what types
of genes are necessary for brain development; importantly,
they show that a large variety of genes can be studied in
this way.

Full Genome RNAi Analysis in Primary Neurons
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Full-Genome RNAi Screen in Primary Neural Cells
For the genome-wide screen, we used a library containing

,21,300 dsRNAs, representing approximately 99% of annotated

genes as well as additional predicted genes [24,25]. Primary cell

culture preparations were applied to 384-well plates pre-aliquoted

with dsRNAs and incubated for one week (Figure S2D). The

morphologies of the living GFP-labeled cells in response to RNAi

were imaged on a robotic microscope and also visually scored.

From visual inspection, morphological phenotypes were scored for

excessive branching, defasciculation, axon blebbing, cell loss, and

reduced outgrowth.

The initial full genome screen identified 336 dsRNAs that

caused strong phenotypes and a further 2,106 dsRNAs that

generated moderate to weak phenotypes. The identified genes

encompassed most functional categories, with a large proportion

being novel genes with no predicted function. In the initial screen,

136 dsRNAs that resulted in visible phenotypes represented genes

that were previously shown to be required in Drosophila neurons or

glia (Table S1). These functionally diverse genes included Notch

(determination), MAPK/rolled (signaling), Insulin-like Receptor (growth

and differentiation), MAP1B/Futsch (microtubule binding), Rac2

(Actin dynamics), Frizzled (signal transduction), Synaptobrevin

(synaptic vesicle release), Kinesin light-chain (axon transport), and

V-gated K+ channel/ether a go-go (electophysiological signaling).

Validation of in vitro RNAi Phenotypes
From the full-genome screen, 125 genes were selected for

confirmation of the RNAi primary cell phenotypes. These

included all the candidates that had a strongly penetrant RNAi

phenotype and that have vertebrate homology using Reciprocal-

Best-Blast and other criteria. Proteasomal and ribosomal genes

were excluded due to their widespread cellular functions. The

dsRNAs for the 125 candidates used in the full genome screen

were resynthesized for multiple replicate analysis. To control for

potential off-target effects caused by long dsRNAs [26,27], for

each gene, 1–2 additional non-overlapping dsRNAs that had no

homology to other genes at a statistically determined 17- to 19-

basepair cut-off threshold [26,27] were synthesized. The primary

culture and RNAi conditions used in the full genome screen were

carried out blindly on 12 replicates. With the secondary screen, the

phenotypes of 104 of the initial 125 selected hits were confirmed

with 2 or more independent dsRNAs (Table 1).

To statistically analyze the morphological characteristics of the

GFP-labeled cells imaged on the robotic microscope, digital image

analysis tools were developed, since existing commercial image

analysis software packages were far too generic for the analysis of

the Drosophila neural cultures. Image features, including the

amount of branched regions, sizes of cell clusters, lengths of

fascicles, and degrees of connectivity were quantified (Figure 2A)

and normalized against controls within the replicate plates. Using

the Multivariate Student’s t-test with a statistical cutoff of

p#0.001, 83% of the genes retested showed RNAi phenotypes

significantly different than wild-type controls with two or more

independent dsRNAs (Table 1). Genes that retested as significantly

different from wild-type controls with only one dsRNA are

reported in Table S2. For the quantified image features, heat-map

hierarchical clusters were generated (Figure 2B, Figure S3). For

the heat map, the quantified values of the image features were

represented by a color code (red and green, Figure 2B) where red

values show an increase in the phenotype value and green shades

show decreases in the phenotype value according to the designated

scale. For example, SNAP RNAi caused disruption of cell

proliferation that would normally generate healthy, large sized

cell clusters. Thus there was an overall increase in the number of

small cell clusters, as represented by the red shading of the ‘‘small

clusters’’ category. Interestingly, by using blebbing, connectivity,

and branching features for cluster analysis, we found that genes

associated with vesicle and protein trafficking were localized to a

similar region within the hierarchy (Figure 2B).

Hierarchical cluster analysis could assist in the prediction of

roles for genes with no known functional motifs, since genes of

similar function are likely to have a greater chance of localizing to

similar regions of the hierarchy. For example, the novel gene

CG3403 was mapped in the highlighted cluster region (Figure 2B).

The rat homolog of CG3403 is Phocein, and it is reported to localize

to the neuronal Golgi apparatus and dendritic spines [28]. Based

on its sequence similarity to clathrin adaptor proteins, it is

hypothesized to be involved in vesicular endocytosis, however its

precise function is unknown. Importantly, growth cone dynamics

are mediated by endocytosis in a similar manner to vesicle

recycling at the synapse [29]. Thus it is possible from the RNAi

outgrowth phenotypes and clustering analysis that CG3403 could

be involved also in protein trafficking during axon outgrowth.

General bioinformatics tools were also informative for analysis

of the candidate genes. For example, from current database

information, at least 55% of the validated genes have expression

within nervous system tissue during Drosophila embryogenesis. A

significant portion of the genes with embryonic neural expression

also had maternally deposited mRNA for the same gene in the

Figure 1. Morphological phenotype features and gene classes
observed in RNAi screen. (A–C) Confocal micrographs of live, GFP-
labeled neurons and glia. Inset on bottom right hand corner is
enlargement of dotted small box areas in same image. (A) Wild-type (no
dsRNA) control culture shows well fasciculated cell processes connect-
ing cell body clusters. (B) Hydrogen-transporting ATPase VhaAC39
dsRNA treated cells show increased varicosities (blebs) along cell
processes, and excessive branching relative to controls. (C) Novel gene
CG14883 dsRNA treated cells show a combination of excessive
branching and defasciculation. (D) Cartoon of axon morphologies in
wild-type, and RNAi-treated cells. Wild-type axons emanating from
neurons in the same cell body cluster often extend together in bundles
(top). Axonal blebs are indicated with arrowhead and lack of bundling
(defasciculation) is indicated by double-ended arrow.
doi:10.1371/journal.pgen.1000111.g001

Full Genome RNAi Analysis in Primary Neurons
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Table 1. Genes implicated in neural development. All listed genes show disrupted primary neuronal phenotypes with 2 or more
independent RNAi amplicons.

Drosophila Gene ID Drosophila Gene Name Human Homology Mouse Homology Description

Channels

CG4370 Irk2 KCNJ9 Kcnj9 inward rectifier potassium channel

CG16793 PKD1L2 Pkd1l2 Ca2+ channel

CG12904 KCNT1 C030030G16Rik Ca2+-activated K+ channel

CG1066 Shaker cognate b KCNB2 Kcnb2 V-gated K+ channel

Transporters

CG18660 Nckx30C SLC24A2 Slc24a2 Ca2+, K+:Na+ antiporter

CG10413 SLC12A9 Slc12a9 Na+:K+:Cl2 symporter

Receptors

CG31092 LpR2 VLDLR Vldlr low-density lipoprotein receptor

CG11155 GRIK4 Grik4 kainate glutamate receptor

CG4875 RCP9 Crcp G-protein coupled receptor

CG7535 GluClalpha GLRA3 Glra3 GABA receptor activity

CG5911 ETHR GHSR Ghsr neuropeptide receptor

Cell Adhesion

CG1634 Nrg L1CAM C130076O07Rik Ig cell adhesion

CG14762 GP5 Gp5 LRR cell adhesion

CG16974 LRRN5 Lrrn2 LRR cell adhesion

Cytoskeleton Associated

CG32137 LOC92558 BC038613 microtubule binding

CG17461 Kif3C KIF17 Kif17 microtubule motor

CG6450 lava lamp CEP2 Cep2 cytoskeleton binding

CG10642 Klp64D KIF3A Kif3a kinesin microtubule motor

CG32138 FMNL2 Fmnl2 actin binding

CG3299 Vinculin VCL Vinculin actin binding

CG1200 Aplip1 MAPK8IP1 Mapk8ip1 kinesin binding

CG6224 diablo KLHL20 Klhl20 actin binding

CG14535 FLJ10157 microtubule binding

CG9995 Huntingtin HD microtubule binding

Vesicle and Protein Transport

CG7961 alphaCop COPA Copa protein transport

CG9539 Sec61alpha SEC61A2 Sec61a2 protein transport

CG1250 sec23 SEC23A Sec23a exocytosis

CG10130 Sec61beta SEC61B Sec61b protein transport

CG7740 prominin-like PROM1 Prom1 protein transport

CG6095 EXOC8 Exoc8 exocyst component

CG6625 Snap NAPA Napa soluble NSF attachment

CG1528 gammaCop COPG Copg protein transport

CG9778 SYT14 Syt14 vesicle tranpsort

CG7360 Nup58 NUPL1 Nupl1 nucleocytoplasmic transport

Transcription

CG13316 Mnt MAD Mxd3 RNA pol II transcription factor

CG4539 Bekka C14orf111 LOC269546 transcriptional activator

CG3871 Six4 SIX4 RNA pol II transcription factor

CG31256 Brf BRF1 Brf1 transcription factor binding

CG9305 BDP1 G630013P12Rik transcription factor

CG5890 CSEN Csen presenilin binding, transcription

DNA/RNA associated

CG3658 CDC45L CDC45L Cdc45l DNA binding

Full Genome RNAi Analysis in Primary Neurons
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Drosophila Gene ID Drosophila Gene Name Human Homology Mouse Homology Description

CG10327 TBPH TARDBP Tardbp mRNA binding

CG12352 separation anxiety MAK3 Mak3 mitotic chromatid adhesion

CG7187 Ssdp SSBP3 Ssbp3 single stranded DNA binding

CG40411 Parp PARP1 Parp1 DNA binding/repair

CG7154 BRD7 Brd7 DNA binding

CG9677 Int6 EIF3S6 Eif3s6 translation initiation factor

CG18009 Trf2 TBPL1 Tbpl1 DNA binding

CG9633 RpA-70 RPA1 Rpa1 single stranded DNA binding

CG10215 Ercc1 ERCC1 Ercc1 damaged DNA binding

CG13298 SF3B14 0610009D07Rik mRNA splicing factor

CG4236 Caf1 RBBP4 Rbbp4 histone binding

Enzymes

CG1970 NDUFS2 Ndufs2 NADH dehydrogenase

CG12082 USP5 Usp5 ubiquitin specific protease

CG10679 Nedd8 NEDD8 Nedd8 protein catabolism

CG2656 MGC14560 D5Ertd708e ATP binding

CG8891 ITPA Itpa nucleic acid metabolism

CG32056 PLSCR1 LOC433328 phospholipid scramblase

CG9372 KLKB1 Klkb1 protease

CG12077 PIGC Pigc glycosyl transferase

CG7266 Eip71CD MSRA Msra methionine sulfoxide reductase

CG4829 GGT1 Ggt1 acyltransferase

CG31871 LIPL1 Lip1 triacylglycerol lipase

CG4842 HPGD Hpgd oxidoreductase

CG33085 ASL Asl argininosuccinate lyase

Signal Transduction

CG10257 FAIM Faim apoptotic inhibitory protein

CG1954 Pkc98E PRKCE Prkce protein kinase C

CG1676 cactin C19orf29 signal transduction

CG18803 Presenilin PSEN2 Psen2 receptor peptidase

CG9738 Mkk4 MAP2K4 Map2k4 MAP kinase kinase

CG9098 BCAR3 Bcar3 SH2/SH3 adaptor

CG31349 polychaetoid TJP1 Tjp1 guanylate kinase

CG1848 LIMK1 LIMK1 Limk1 protein kinase

CG31475 Cab45 Sdf4 calcium mediated signaling

CG18247 shark ZAP70 Zap70 protein kinase

CG30021 skiff MPP7 Mpp7 guanylate kinase

CG14782 PLEKHF2 Plekhf2 guanyl-nucleotide exchange factor

CG1404 ran RAN Ran GTP binding

CG7156 RPS6KC1 Rps6kc1 protein kinase

CG9222 TSSK4 Tssk4 protein kinase

CG10951 niki NEK8 Nek8 protein kinase

Novel Genes

CG1109 WDR33 WD REPEAT 33

CG7146 VPS39 Vps39

CG5484 YIF1B Yif1b

CG3305 LAMP1

CG3403 PREI3 Prei3

CG18675 C21orf59 1110004E09Rik

CG2691 KIAA0690 AA408556

Table 1. Cont.
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early embryo such as Caf1, Lpr2, and MAGE. It is possible that

many of these genes have not been detected in previous screens for

embryonic nervous system patterning, because maternally depos-

ited mRNAs can sometimes compensate for the loss of zygotically

expressed transcripts during early development.

Phenotypes and Functions of Selected Hits
A selection of the validated genes was morphologically analyzed

in greater detail using confocal microscopy and pan-neural

markers (Figure 3). Relative to control cultures (Figure 1A, 3A),

reduced fasciculation and increased branching of processes were

the most widespread phenotypes observed. While these two

attributes were often observed in combination, many dsRNAs

generated distinctive phenotypes. For example, knockdowns of the

translation initiation factor Int6 and ran GTPase both caused

excessive branching and defasciculation, however their morpho-

logical profiles were quite different due to the relative amounts of

each feature (Figure 3B,C). Further knockdowns of gene

expression including: Huntingtin, Sec61a, actin binding gene diablo,

novel gene CG12082, LDL receptor Lpr2, and Dopamine 2-like

Receptor (CG9569), also showed distinctive characteristics of

morphological disruption (Figure 3D–I). Given the diversity of

complex phenotypes of neural morphology in cell culture, the

importance of using computer algorithms to quantify specific

features is underscored. Thus image analysis algorithms such as

those presented here will be useful in future suppressor/enhancer

screens or chemical screens in primary neural cells.

From the RNAi phenotypes examined in greater detail, the

Dopamine 2-like Receptor (Figure 3I) was of interest and showed an

excessive branching phenotype. Although neurotransmitter recep-

tors are most widely known for their central role in synaptic

transmission, they have also been implicated in axon outgrowth

[30] and are expressed during early neurodevelopment, prior to

the establishment of synapses [31–33]. Interestingly, dopa decarbox-

ylase deficiency mutants in Drosophila, which are unable to

synthesize serotonin and dopamine, show an extensive increase

in axonal branching in the larva [34].

Ion channels were also represented amongst the validated RNAi

candidates. For example, we found that knockdown of CG16793, a

calcium channel, showed disruption of neuronal growth in culture,

with increases of branch points and weakened connectivity of

axons between neighboring cell body clusters (Figure S3). During

axonal outgrowth, calcium transients are important in regulating

the advance of growth cones [35] and it has been demonstrated in

cortical neurons that voltage-gated calcium channels mediate this

activity [36]. Increased calcium transients result in slowed growth

cone advancement [36,37]. Changes in the migration rates and

sizes of growth cones during outgrowth are correlated with the

demarcation of axonal branch points and it is now hypothesized

that the local changes in calcium activity could ultimately lead to

the activation local branching morphogenesis [36]. It has also been

observed that the neurotransmitter serotonin can enhance neurite

outgrowth through the activation of serotonin receptors and

voltage gated calcium channels [38]. Thus our observations

support the findings that altered calcium signaling can lead to

changes in axon outgrowth and branch patterning.

The screen identified numerous DNA- and RNA-associated

genes that have poorly understood roles in the nervous system. It is

thought that during neurodevelopment, postmitotic neurons are

highly vulnerable to DNA damage [39]. Thus genes involved in

DNA repair have an influence on the genesis of the nervous

system. In our screen we identified Parp, the Drosophila homolog of

PARP-1, which has a well-characterized role in DNA repair [40].

Our data support recent work in rat cortical neurons suggesting

that PARP-1 may also have a neurotrophic role [41].

Genes relevant to neuropathological disorders were also

identified in the screen, including Presenilin, Huntingtin, and

Prominin-like. The human orthologs of these genes are implicated

in Alzheimer’s, Huntington’s, and retinal degeneration diseases

respectively. The RNAi phenotype of Huntingtin shows increased

branching and defasciculation (Figure 3D), and suggests that the

wild type form of Huntingtin is important for proper nervous system

function. This observation is in agreement with previous

observations on Huntingtin loss [42]. In Huntington’s disease,

Drosophila Gene ID Drosophila Gene Name Human Homology Mouse Homology Description

CG4893 CGI-38 2700055K07Rik

CG31126 CGI-143 1810037G04Rik

CG13990 Gm256

CG14883 MIR16 Mir16

CG8309 GA17 Ga17

CG1463 FLJ20729 2410019A14Rik

CG31917 ZNHIT1 Znhit1

CG3703 RUNDC1 Rundc1

CG5642 EIF3S6IP Eif3s6ip

CG32685 Ylpm1

CG12078 HSPC129 D2Ertd485e

CG10059 MAGE MAGED1 Ndnl2

CG6145 FLJ13052 BC004012

CG10249 ANKRD15 D17Ertd288e

CG8055 CHMP4B 2010012F05Rik

CG11448 FLJ39378 2900002H16Rik

doi:10.1371/journal.pgen.1000111.t001

Table 1. Cont.
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Figure 2. Quantification of RNAi phenotypes and cluster analysis. (A) Screen images acquired on a robotic widefield fluorescence
microscope were analyzed by custom image analysis software. Image features relating to the health of the cultures were extracted using filters that
measured the amount of small dots (indicator of debris and blebbing), small, medium and large cell clusters, lengths of processes and numbers of
branch points, and the strength of connectivity between large cell clusters. Indicators of weaker primary neural health are decreased sizes of cell
clusters, increased branch points, decreased projection lengths, and decreased interconnectivity between cell clusters. (B) For each image feature
quantified in (A), heat map representation values were assigned to each of the quantified features, where increased values are in red and decreased
values are in green. All the quantified image features for each gene were assembled into a single profile and the profiles were ordered into a
hierarchical cluster as shown. Normalized (NOR) feature quantifications are included. Protein and vesicle trafficking genes were largely located to the
bottom region of the hierarchy as shown in highlighted region.
doi:10.1371/journal.pgen.1000111.g002
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Huntingtin protein is thought to acquire gain of function due to

expanded polyglutamine repeats. Genetic modifier screens using in

vivo Huntington’s disease models in flies have been successful in

identifying evolutionarily conserved suppressors of polyglutamine

expansion [43]. Potentially, by using primary cell based RNAi, this

type of screen could be carried out on the entire genome in a high-

throughput manner, and thus identify potential new drug targets

for the development of therapeutics.

Analysis of Sec61a in vivo
The screen identified a significant number of genes involved in

vesicle and protein trafficking including SNAP, sec23, aCOP, cCOP,

Ran GTPase, Arf102F, and both Sec61a and Sec61b. Protein

trafficking is most likely a key process in generating the highly

polarized structure of neurons. Yet this class of genes is difficult to

study in a neuronal context due to their widespread expression.

Thus the use of RNAi on dissociated neurons could also yield new

insights into the functions of these genes.

The Sec61a translocon gene has potential relevance to human

disease, since it is implicated in polyglutamine-induced neurode-

generation [7,44]. It is highly conserved, with 91% peptide

identity to human Sec61a. Sec61a dsRNA-treated cultures were

scored both visually and from quantitative analysis as a strong hit

that showed defasciculation and excess branching (Figure 3E). To

determine whether Sec61a hypomorphic mutants have neural

outgrowth defects in vivo, homozygous Sec61ak04917 [7] and

Sec61al(2)SH0190 [45] mutant embryos were stained with neuronal

and glial markers (Figure 4). Both alleles are P element insertions

to introns of the Sec61a locus [7,45]. The Sec61ak04917 allele was a

stronger hypomorph than the Sec61al(2)SH0190 allele, yet both

showed similar types of nervous system disruption. In the CNS,

commissural axon tracts were poorly separated in 33/145 (23%)

hemisegments of Sec61al(2)SH0190 homozygotes (Figure 4B,E,

arrows, 145 hemisegments scored) and in 27/105 (27%) of

Sec61ak04917 homozygotes, while wild type embryos showed no

similar commissural disruptions in 136 hemisegments scored. In

Figure 3. Confocal micrographs of live GFP-labeled primary neural cultures treated with dsRNAs showing altered cell
morphologies. All cultures were grown on glass coverslips coated with poly-L-lysine. (A) Wild type (negative control). Wild type primary neurons
in a mature culture show cell body clusters interconnected by well-fasciculated axon tracts. (B) Int6 transcription initiation factor knockdowns show
extensive defasciculation. (C) Ran GTPase RNAi cultures have both excessive branching and defasciculation. (D) Huntingtin knockdowns show a
moderate level of excessive branching. (E) Sec61a RNAi shows poor connectivity between cell clusters and highly branched, defasciculated neurons.
(F) Diablo (cytoskeletal binding protein). Diablo knockdown leads to a primarily defasciculated phenotype. (G) CG12082 (novel gene) RNAi causes
reduced connectivity between cel clusters, excessive branching and defasciculation. (H) Lpr2 LDL receptor knockdowns show excessive branching
and defasciculation, yet with robust outgrowth. (I) Dopamine 2-like Receptor RNAi shows defasciculation.
doi:10.1371/journal.pgen.1000111.g003
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Figure 4. Phenotypes of wild type and Sec61a mutant embryonic nervous systems. (A–C, G–I) Wild type. (D–F) Sec61aSH190 homozygous
mutant. (J–L) Sec61ak04917 homozygous mutant. Anterior is to the top. PNS images have CNS off to the left in C,F,G,I,J,L. (A–C) Neurons are labeled
with anti-HRP (red) and glia are labeled with mAb 5B12 (green). (G,H,J,K) Motor neurons labeled with mAb 1D4 (red) and anti-Synaptotagmin-1
(green). (I,L) Sensory neurons labeled with mAb 22C10. All embryos are late embryonic stage, approximately 22 hours old. (A) Wild-type CNS shows
ladder-like pattern of axon tracts with commissural tracts ensheathed by midline glia (arrow). (B) Red channel (neurons) only of (A). (C) Wild-type PNS
shows stereotypic pattern of motor- and sensory neuron projections (red) and coverage of nerve tracts by peripheral glia (green). SNa branch is
indicated with arrow. (D) Sec61a embryos show disruption of CNS axon tract pattern (see also E), with glial profiles displaced compared to wild type
(arrows). The confocal laser power relative to that used for imaging the wild type was increased to show glial staining pattern. (E) Neurons from (D)
shown, highlighting lack of separation of central commissures (arrows). Defasciculation of peripheral axon projections at the CNS/PNS transition zone
(asterisk) is also evident. (F) Sec61a mutant PNS shows variable disruption of axon patterning across hemisegments. Poor glial coverage of
mistargeted SNa branch is indicated (arrow). Ectopic expression of mAb5B12 antigen is observed in the periphery (arrowheads). (G) Wild type PNS
motor neuron pattern (red). Peripheral nerves near CNS/PNS transition zone are well fasciculated and tightly bundled (arrowhead). Synaptotagmin-1
is strongly detected at motor axon termini (arrows). (H) Wild type CNS motor neuron pattern (red) and distribution of synapse marker Synaptotagmin-
1 (green). (I) Wild type PNS sensory neuron pattern. Arrow shows Anterior Fascicle sensory neuron tract pathway leading towards CNS on the left. (J)
Sec61ak04917 mutant PNS motor neuron pattern (red) shows defasciculation (solid arrows) and lack of Synaptotagmin-1 immunolabeling (green) at
motor axon termini (concave arrow) compared to wild type (G, concave arrows). (K) Sec61ak04917 mutant CNS motor neuron pattern (red) shows lack
of development of CNS compared to same age wild type embryo (H). CNS axon pathfinding is disrupted along longitudinal connectives (arrow). (L)
Sec61ak04917 mutant PNS sensory neuron pattern shows Anterior Fascicle sensory nerve aberrantly crossing hemisegment boundary anteriorly (arrow,
compare to (I)). Round sensory neuron cell bodies are disorganized compared to stereotypic wild type pattern. (C, F, I, L) Asterisks indicate lateral
chordotonal organs, which are disorganized in both Sec61ak04917 (L) and Sec61aSH190 (F) alleles compared to wild types (C, I).
doi:10.1371/journal.pgen.1000111.g004
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the mutants where the CNS commissures were malformed, the

midline glia were also aberrantly distributed (Figure 4A,D,

arrows). In the stronger Sec61ak04917 allele, the nervous system

development was stunted in comparison to wild types. After

22 hours of development, the CNS was structurally mature in all

wild type embryos (n = 200), showing well-fasciculated longitudinal

axonal tracts and expressing strongly the synaptic marker

Synaptotagmin-1 (Figure 4H, green). However after the same

time duration in Sec61ak04917 homozygotes, CNS development was

representative of earlier stages in all embryos scored, (compare

Figure 4H, K) (n = 200).

The PNS of both Sec61a alleles showed aberrant motor and

sensory axon tracts. The axon bundles appeared defasciculated

(Figure 4E, asterisk, Figure 4J, solid arrows), and hemisegments

with incorrectly targeted/misbranched axonal projections were

identified in 18/145 (12%) of Sec61al(2)SH0190 homozygotes, and

63/115 (55%) of Sec61ak04917 homozygotes, compared to 2/138

(1%) of wild types. The profiles of the PNS glial processes were

abnormal compared to wild types (Figure 4C,F). It has been

previously shown that the disruption of embryonic glial develop-

ment can in turn lead to errors in axon pathfinding [46]. In the

Sec61a mutants, typical neuronal patterning errors that occur as a

result of disrupted glial sheaths were observed, such as the sensory

system Anterior Fascicle crossing hemisegment boundaries

anteriorly (Figure 4I,L, arrows). These phenotypes could arise

because PNS glia contribute to the establishment of the correct

positioning and bundling of the peripheral nerves at the CNS/

PNS transition zone [47]. We also observed erratic positioning of

sensory neurons at the PNS/CNS transition zone in Sec61ak04917

homozygotes 89/127 (70%) (Figure G,J, compare arrowheads) and

57/103 (55%) of Sec61al(2)SH0190 homozygotes compared to none

in wild types (n = 108). Such defects are not likely to be simply due

to underlying defects in musculature (Figure S5), since it has been

shown that sensory neurons develop rather normally in the

absence of mesoderm development [48] and additionally, muscle

cells are not known to have an influence on the positioning of

CNS/PNS transition zone neuronal exit and entry points.

We also observed a reduction in expression of antigens within

the nervous systems of Sec61ak04917 and Sec61al(2)SH0190 mutant

embryos. For example, all heterozygous mutant Sec61al(2)SH0190

embryos analyzed showed reduced glial mAb 5B12 antigen

labeling compared to heterozygotes stained in the same prepara-

tion, as well as wild-type embryos. For confocal imaging of

embryos in Figure 4, the laser power was increased for the

Sec61al(2)SH0190 specimens to show mAb 5B12 staining. Similarly

we observed less Synaptotagmin-1 labeling within Sec61ak04917

mutant embryos (Figure 4G, K, specimens imaged with equivalent

laser power in green Synaptotagmin 1 channel). Given the

translocon function of the Sec61a protein, it is likely that many

neuronal and glial proteins are not being efficiently trafficked

within the hypomorphic mutants, leading to disruption of

neuronal development. The analysis of mutant embryos extend

the RNAi experiments and provide further evidence that the

Sec61a translocon gene is required for neural development.

Validation of Ran GTPase in Mouse Neurons
Since a large number of genes identified in the RNAi screen

have close homologs to vertebrate genes, we chose to validate

another gene in embryonic mouse brains. Ran GTPase was a highly

conserved gene identified in the full genome screen that showed

dramatic effects on neurite outgrowth when knocked down (Figure

S2E). Ran GTPase is a member of the Ras superfamily that is

involved in a variety of cellular process, including nucleo-

cytoplasmic transport [49] and mitosis [50]. The Drosophila Ran

GTPase protein has 87% similarity to mouse and human Ran.

Ran binds to the human AR receptor protein, which shows a

polyglutamine expansion in Kennedy’s Disease, a neurodegener-

ative disorder [8], but the role of Ran in Kennedy’s disease, or in

neurodevelopment is not known. In Drosophila, Ran transcripts are

maternally deposited into the embryo. During later embryonic

development Ran becomes zygotically expressed specifically in the

CNS at stage 12 [51], which corresponds to a time of rapid neural

cell division and migration.

Ran is known to be expressed in the mouse brain at early

embryonic stages [52], and is thus a good gene candidate to

characterize in mouse brain development using RNAi. We

immunolabeled Ran in dissociated cortical neurons and also

found high levels of expression in the nuclei of these cells (Figure

S4). Furthermore, Ran immunolabeling can be detected in the

processes (Figure S4), suggesting a role for Ran in neurite

outgrowth, as well as in nuclear import. To analyze the role of

Ran in mouse development, we transfected Ran RNAi constructs

into the lateral ventricles of the embryonic day 14 (E14) mouse

brains using microinjection and electroporation techniques. The

transfected cortices were dissected and cultured as explants or

dissociated cultures. To test the efficacy of the Ran RNAi

constructs (1 and 2) in reducing the levels of Ran protein, nih-

3T3 cells were transfected with RNAi constructs at 70%

transfection efficency. Western blot analysis of total protein from

transfected and untransfected cells showed a 64% knockdown of

Ran in the presence of Ran RNAi construct number 2 (Figure 5B).

Ran RNAi electroporated neurons showed processes with abnor-

mal blebbing (arrow in Figure 5A right panel) compared to the

normal appearing processes in the vector control (Figure 5A left

panel). We observed that only 0.7% of control neurons presented

blebs while 65.6% of the Ran RNAi neurons showed blebs

(Figure 5C). The blebbing phenotypes in the mutant compared to

wild type was statistically significant (P,0.02). To ensure that the

blebs present in Ran RNAi neurons were not due to the cell death

we analyzed the explants with an apoptosis marker, anti-Cleaved

Caspase3. We found that GFP-labeled neurons in the Ran RNAi

explants did not colocalize with Cleaved Caspase3 (Figure 5J).

Thus, the blebbing phenotype was probably due to defects in

neurite outgrowth. In addition to the blebbing phenotype, Ran-

deficient neurons showed an increase in branch arborization

(Figure 5A right panel) as compared to the normal branch

morphology seen in the control (Figure 5A left panel). The number

of branching points per neuron increased significantly (P,0.0001)

from 3.262.5 in the control to 11.563.6 (Figure 5D). We also

analyzed the effect of Ran deficiency in vivo using explant cultures.

Analysis of 3D reconstruction of control (Figure 5E top panel) and

Ran RNAi (Figure 5E bottom panel) showed that the branching

and blebbing phenotype is also present in the in vivo situation.

Quantitation of the number of blebs per nuclei in explant sections

showed a very significant (P = 0.0007) increase in Ran RNAi

deficient explants (Figure 5F). This increased arborization

phenotype observed upon knockdown of Ran protein partly

resembles the effect of Rac GTPase loss-of-function in mouse and

Drosophila neurons [53]. Rac GTPases are major regulators of the

actin cytoskeleton while the Ran GTPase is a major regulator of

the microtubule cytoskeleton. The interplay of both the actin and

microtubule cytoskeletons is known to be important for axonal

branching [54,55].

To further characterize the role of Ran in neural development,

we immunolabeled sections from Ran RNAi-transfected brains

with various neuronal markers. In some explants only a few cell

bodies of Ran RNAi neurons were present in the intermediate zone

(IZ) (Figure 5G second panel), compared to the control-transfected
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Figure 5. Ran knock down by RNAi results in abnormal neurite morphology in mouse neurons. (A) Cortices from E14 embryos were
transfected by electroporation with either a control GFP plasmid or Ran RNAi contructs, and then dissociated and cultured for 96 hours. Analysis of
dissociated neuron morphology shows Ran RNAi neurons have increased number of blebs and branches (right panel) compared to control neurons
(left panel). (B) Ran knockdown in nih-3T3 cells transfected with control GFP vector and Ran RNAi constructs. Equal loadings of total protein shown by
tubulin signal demonstrates a decrease in the amount of Ran by about 50% in the presence of Ran Rnai-2 and when the two constructs are
combined. (C) Analysis of the increase in the number of blebs in dissociated neurons. A significant increase in the number of blebs is observed upon
Ran knockdown (p = 0.02). The average number of neurons with blebs is presented as percentage of the total neuron number (Control = 0.68+/21.2
SDEV, n = 153; Ran = 66.7+/215.5 SDEV, n = 36). (D) Analysis of the branching phenotype in dissociated neurons show a very significant increase of
branching (p,0.0001) upon Ran knockdown (11.56+/20.88 SEM n = 17) compared to the control neurons (3.07+/20.41 SEM n = 24). (E) A Z-series
reconstruction of a Ran RNAi neuron (lower panel) shows an abnormal increase in branch arborization of the processes (yellow arrows) and bleb
number (white arrows) compared to the control (upper panel). (F) Analysis of bleb number in explant cultures. The total number of blebs and cell
nuclei were counted per section for three independent experiments. The average ratio of bleb per nuclei (shown as a percentage) is significantly
increased (p = 0.0007) in the Ran RNAi explants (12.6+/24.2 SEM) compared to the control explants (1.7+/20.4). (G) Ran RNAi neurons labeled with
GFP (green) have processes that are immunoreactive for the neuronal marker Tuj1 (in red) (2nd panel) similar to control neurons (1st panel). (H) MAP2
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cells that were observed to be closer to the IZ and in the cortical

plate (CP) (Figure 5G first panel). In other cases, we noted an

apparent increase in Ran RNAi electroporated cells close to the

subventricular and ventricular zone (SVZ/VZ) compared to

control explants in TAU1 (axonal marker) immunolabeled

explants (Figure 5I). We analyzed the distribution of GFP-positive

cells in the explants by dividing the image in Bins I through VI

(CP = Bin I–III; IZ = Bin III–IV; SVZ/VZ = Bin IV–VI)

(Figure 5I). Three different planes were analyzed per explant.

Quantitation of GFP-cell distribution in the explants suggested

that upon Ran knockdown (Ran RNAi n = 380, 431, 330) the

distribution of cells might shift towards the lower areas (Bin IV–

VI) compared to the controls (Control n = 284, 461, 476).

Immunolabeling for the axonal marker TuJ1 colocalized with

processes from Ran RNAi transfected cells (Figure 5G right panel)

similar to the control transfected cells (Figure 5G left panel).

Interestingly, analysis of MAP2 staining showed in some cases

higher colocalization of MAP2 and GFP in the control neurons

compared to the Ran RNAi neurons in the explant cultures

(Figure 5H left and right panels). Together, these results suggest an

essential and novel role for Ran GTPase primarily in regulation of

neurite extension, which in turn could potentially affect neuronal

polarity and migration.

Discussion

We have used an unbiased genetic screening approach to find

genes important in neural development by analyzing RNAi-

knockdown morphology phenotypes in Drosophila primary neurons.

We have presented 104 validated candidates from the full-genome

screen that represent diverse functional classes such as signaling

molecules, ion channels, receptors, enzymes, DNA/RNA associ-

ated genes, as well as genes with no predicted functions. The

screen also identified numerous genes known to be involved in

vesicle and protein trafficking and two of these, Sec61a and Ran

GTPase, showed novel phenotypes when characterized further in

Drosophila embryonic and mouse cortical explant tissues respec-

tively. Our results show that the primary cell RNAi screening

technique is an efficient means of testing functions of genes in

neurons, especially in the case of pleiotropic genes where

secondary loss of function defects can confound in vivo analysis

or where maternal RNAs might compensate for loss of zygotic

RNA. In the future, since all of the identified genes are

evolutionarily conserved, we will conduct in vivo analyses in either

mice or Drosophila using cell biological, physiological, and

biochemical techniques. We are also developing new primary

neuron RNAi screening assays based on the work presented in this

paper to further categorize gene functions in the processes of

vesicular trafficking and neurodegeneration. Here we discuss our

rationale for using this strategy and how it relates to previous work

in neurogenetics.

RNAi and Drosophila in Gene Discovery
RNAi in flies offers unique advantages: physiological assays in

living cells are possible to carry out since Drosophila grow normally

at room temperature, screening can be efficiently carried out on a

genome-wide scale, full genome RNAi libraries are openly

available for public use, and cell-based RNAi screening can be

carried out efficiently without the use of potentially toxic

transfection reagents which can significantly increase experimental

noise as well as cost [24,25].

To characterize genes involved in neurodevelopment, the

Drosophila model is particularly attractive since it has physical

and genetic similarities to vertebrates and has particularly well-

developed genetic tools [56,57]. Traditional chemical genetic

screens in the fly have provided great insight into major

evolutionarily conserved mechanisms of axon guidance by

identifying genes such as slit and robo [58,59]. Importantly, it is

estimated that more than 60% of human disease-associated genes

have a closely conserved counterpart in the fly [60,61]. Recently,

Drosophila has been used to model human neurological disorders,

and to study the genetic pathways associated with diseases such as

Parkinson’s, Huntington’s, and Alzheimer’s diseases [62]. For

example, analyses of Drosophila Huntington’s Disease (HD) models

have been the first to discover the role of Histone Deacetylases in

suppressing HD phenotypes [63], to show disruption of axon

trafficking in HD models [42,64], and to demonstrate that genetic

reduction of SUMOylation reduces neurodegeneration of the HD

model [65]. There are already some neurological disease models in

fly cell culture, such as for Fragile6Mental Retardation [66] and

Parkinson’s Disease [67], and these could be adapted for use in

high-throughput RNAi screening assays such as described here for

gaining a better understanding of the disease pathways and for

identification of potential therapeutic targets.

Response of Primary Neurons to Genetic Disruption
While neurobiological analysis of Drosophila have most com-

monly been carried out in vivo, assays in primary neural cultures

have been conducted for many years and they are known to have

numerous features which are particularly advantageous for the use

of gene knockdown analysis. In the context of axon outgrowth, it is

likely that primary neuronal cultures represent a sensitized system

in which the functional mechanisms of molecules can be more

easily detected. For example, the addition of cell adhesion proteins

Neuroglian and Fasciclin II to primary neuron cultures stimulates

axonal outgrowth significantly beyond negative control levels [16],

whereas null mutations in Neuroglian and Fasciclin II cause modest

developmental phenotypes. These observations complement our

loss of function data, where knockdowns of both genes caused

reduced axonal outgrowth. Neuroglian was a positive control RNAi

for the primary screen (Figure S1) and all subsequent validations,

and Fasciclin II was a positive hit from the initial primary screen

(Table S1). Thus the primary neurons are probably more easily

perturbed due to a lack of their in vivo permissive growth substrates

with which CAMs interact. Since neuronal phenotypes are

typically observed only when multiple CAMs are mutated in the

same genetic background in vivo, it has been suggested that primary

neurons are a favorable system to understand the role of CAMs in

axon outgrowth [16].

Genetic analyses have also demonstrated close matching of in

vivo and primary neuron phenotypes. Analysis of the spalt gene,

(red), a dendritic marker presents smaller areas of colocalization with GFP (green) in Ran RNAi neurons (right panel) compared to control (left panel)
white arrows indicate areas of colocalization. (I) Analysis with TAU1 (blue) shows Control (left panel) and Ran RNAi (right panel) neurons labeled with
GFP (green). Quantitation of GFP cell distribution in electroporated explants shows the percentage of total cells counted per Bin, a representative
experiment is shown (error bars are standard error of the mean SEM). Control Bins: II = 0.7+/20.3; III = 22.9+/21.5; IV = 59.6+/20.2; V = 13.1+/21.2;
VI = 3.6+/20.5. Ran RNAi Bins: II = 0.1+/20.08; III = 2.3+/20.06; IV = 9.9+/22.1; V = 53.6+/22.9; VI = 34.1+/21.5. (J) Analysis of cell death in explants
with anti-Cleaved Caspase3 (red) immunoreactivity shows that Ran RNAi electroporated GFP neurons (yellow arrows) do not colocalize with anti-
Cleaved Caspase3 (white arrows).
doi:10.1371/journal.pgen.1000111.g005
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which encodes a transcription factor important for neuronal

differentiation, shows abnormal axonal branching and Tubulin

distribution in primary neurons. In vivo, the overall CNS

patterning in spalt mutants is quite normal, however detailed

analysis of spalt DiI-labled clones within the embryonic CNS shows

phenotypes very similar to the primary cell mutant phenotype

[68]. Since fine branching morphologies of neurons are difficult to

observe in the densely compacted neuropil CNS, these observa-

tions suggest that it can be easier to detect such phenotypes in

dissociated cells.

Disruption of axonal trafficking also shows parallels between in

vivo and primary cell phenotypes. We found that knockdowns of

genes known or proposed to be involved in vesicle transport

showed increased blebbing in primary neuronal axons as

compared to controls. Axonal blebs or swellings are known to

occur in vivo from disruption of axon transport and are a result of

buildup of cargo along the axons [69]. Analysis of axon trafficking

of fluorescently labeled cargoes in primary cells could be a

convenient screening tool, and could reduce the initial amount of

preliminary work needed to identify axon trafficking genes. Assays

detecting the localization of subcellular markers for trafficking to

specific locations within neurons, such as to neuromuscular

junctions, dendrites, and organelles, will help us understand better

how the highly polarized structure of the neuron is generated.

Since Drosophila primary neural cultures undergo a full range of

developmental events starting from neuroblast division to

synaptogenesis, the system also provides greater opportunity to

find genes necessary for neuronal development and function

through screening. In contrast, most in vivo screens are designed to

assay a specific stage of development. For example the embryonic

nervous system can be assayed for the generation of neuronal

patterning, but synaptic growth cannot be readily analyzed since

physiological activity of neurons is largely absent except at the

conclusion of embryogenesis. In addition, primary cultures offer

the opportunity to analyze the process of neurodegeneration,

which further extends the representative stages of neuronal life

that can be observed. One caution is that the distinction between

outgrowth versus degenerative phenotypes may not be separable

using single time point imaging assays. Drosophila primary neuronal

axonal processes can retract and lead to shortened axons relative

to wild types if vesicle cycling is disrupted [14] or if neurodegen-

eration occurs [17]. Similarly, RNAi phenotypes of excessive

branching in primary neuronal axons could be due to develop-

mental event relating to axogenesis, or could alternately be due to

degenerative phenomena and toxicity factors [13,14]. In the

future, automated microscopes with faster image acquisition times

will make it more practicable to carry out assays requiring multiple

time point analysis.

Inference of specific gene functions from in vitro phenotypes also

will likely become more accurate when multiple full genome

screening neuronal assays have been performed using a variety of

cell biological and physiological markers and are cross-compared

with bioinformatics tools. We have performed hierarchical

clustering analysis on our morphology data set and find that

genes known to function in vesicle transport, such as alphaCOP and

gammaCOP show similar morphology feature profiles. Although the

pool of genes in our cluster analysis was too small to encompass

enough known members of gene classes with closely related

functions to identify other important regions of the cluster map, we

know from our observations from the primary full genome screen

that members of large functional classes such as ribosomal genes

show similar knockdown phenotypes in culture (K.Sepp, N.

Perrimon, unpublished data) and should in theory cluster together

on a hierarchy as well. While we found that the great majority of

ribosomal subunits were positively identified in our full-genome

screen (K.Sepp, N. Perrimon, unpublished data), for the purposes

of bioinformatics this observation does not directly imply that the

screen represents near-perfect saturation of the genome. It is likely

that certain classes of proteins are more amenable to RNAi than

others, as is likely the case for ribosomal subunits. The reasons for

this may be protein perdurance, as well as the capability of cells to

sometimes function normally with only a fraction of their normal

expression of certain genes. Thus bioinformatic analysis of future

screens should incorporate an assumption that false negatives do

occur. In addition, bioinformatic analyses should include confi-

dence level criteria that relate to whether the screen hits being

analyzed were validated through repetitive secondary screening or

were simply identified in the initial full-genome screen.

Summary
In adapting RNAi techniques to assay outgrowth in living

primary cells, we were able to perform the first complete genome

RNAi screen in neurobiology. We confirmed the RNAi pheno-

types of 104 evolutionarily conserved gene candidates that

represented a broad range of functional classes. We found that

this method is especially helpful in analysis of genes that would be

difficult to detect in classical genetic screens due to pleiotropy and

other issues. The work presented here lays the foundation for

future genetic profiling using a wide variety of assays for specific

neural functions as well as physiological assays in living cells.

Materials and Methods

Fly Genetics
The fly stock used to generating primary cell cultures for the full

genome screen was w, elavC155-GAL4, UAS-mCD8-GFP/FM6;gcm-

GAL4/CyO. The gcm-GAL4 line is a product of P-element exchange

of the P[GAL4, w+] with the P[lacZ, ry+] element in the rA87

enhancer trap line [70]. Flies were raised in large populations and

placed in population cages maintained at 25uC. For cell culture,

embryos were collected on molasses plates streaked with paste

made from autoclaved yeast mixed with water.

For in vivo nervous system analysis, the Sec61al(2)SH0190 [45] and

Sec61ak04917 [71] alleles were analyzed. For unambiguous

identification of homozygous mutant embryos, the Sec61a alleles

were balanced over the CyO, wgen-lacZ chromosome.

Drosophila Cell Culture
Gastrula stage embryos ranging from 6 to 8 hours old were

washed from molasses plates with 21uC water, and dechorionated

in 50% household bleach in a Nytex-bottomed basket. Embryos

were rinsed with sterile distilled water and transferred to Dounce

homogenizers containing 100 mL Shields and Sang M3 media

(Sigma), and homogenized using 10 pestle strokes. Homogenate

was transferred to centrifuge tubes, and debris was pelleted twice

with centrifugation at 40 g for 10 min and 5 min. Cells were

pelleted by centrifugation at 380 g for 10 min. Cells were

resuspended to 26106 cells/mL using Shields and Sang M3

media (Sigma) supplemented with 10 U/mL penicillin, 10 ug/mL

streptomycin, and 200 ng/mL insulin.

Full Genome RNAi Screen
At the Drosophila RNAi Screening Center at Harvard Medical

School (http://www.flyrnai.org), dsRNAs were aliquoted in 5 mL

volumes into plastic optical-bottomed, black 384-well plates

(Corning), with each well containing 250 ng of dsRNAs ranging

from approximately 200–500 bp. Specific details on dsRNA

generation are previously reported [72]. 10 mL of primary cell
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preparation (at 26106 cells/mL) were aliquoted to the dsRNA

384-well plates using a MultiDrop liquid dispenser, and incubated

in a humidified chamber for 2 days at 18uC. Following serum-free

incubation, cells were supplemented with 30 mL Shields and Sang

M3 media (Gibco) containing 5% heat inactivated fetal bovine

serum (JRH Biosciences), 10 U/mL penicillin, and 10 ug/mL

streptomycin. Cells were incubated an additional 5 days at 18uC in

serum-containing media. Following incubation, live, GFP express-

ing neurons and glia were scored visually, and 5126512 pixel

images were collected with a Discovery1 automated widefield

microscope (Universal Imaging). Raw images are available upon

request.

Control dsRNAs for Rho1, GFP, DIAP-1, and Neuroglian were

included on each dsRNA plate. GFP dsRNA served effectively as a

negative control, since GFP dsRNA wells were phenotypically

indistinguishable from other negative controls such as lacZ dsRNA

or water. The GFP dsRNA did not significantly knock down GFP

signals in the cells due to the two very strong neuronal and glial

promoters simultaneously driving GFP expression, in addition to

protein perdurance effects. Except for Rho1, GFP, DIAP-1, and

Neuroglian controls on each plate, all wells were scored blind.

Importantly, dsRNAs for Rho1, DIAP-1, and Neuroglian were

also represented in the dsRNA collection, and were detected as

hits when scored blind. The primary screen was carried out on 1–2

independent replicates. For secondary screening, dsRNAs were

resysnthesized as reported previously [73]. The secondary screen

dsRNAs were aliquoted to 384-well plates in 2 different

orientations to avoid plate location artifacts. The secondary

validation screens were carried out on 12 independent replicates.

For each gene 2 to 3 additional non-overlapping dsRNA

amplicons were generated that had no 17–19 bp matches to

other genes. Details of the dsRNAs used are publicly available at

the DRSC website: www.flyrnai.org.

Digital Image Analysis
Image Feature Extraction of Cell Clusters. From the

automated widefield microscopy images, components of the cell

phenotypes were quantified. First, neuron cell clusters sizes were

determined using the Otsu method (Otsu, 1979), which chooses a

global threshold to minimize the intraclass variance of the

background and foreground pixels, to convert a raw intensity

image to a binary image. The foreground was divided into three

categories: small dots (area#16 pixels), small cell clusters (16

pixels,area#400 pixels), and large cell clusters (400 pixels,area).

Features were computed relating to small dots, small cell clusters,

and large cell clusters. A morphological opening was then

performed with a disk of radius five to separate cell clusters that

are connected by strong axon bundles. This step was followed by a

morphological closing operation using the same mask.

Image Feature Extraction of Axon Connections. Cell

clusters were excluded from the images and we applied a Gabor

filter-based approach to compute the axon strength map [74]. The

breadth-first search algorithm was applied to the axon strength

map and computed all non-overlapped connections between each

pair of cell-clusters. The strength of each connection is calculated

as the average intensity of pixels that belongs to the connection.

Weak connections (strength,0.3) and very long connections

(length.300 pixels) were ignored. The ratio between the length

of a connection and the Euclidean distance between its two end

points was also computed. To keep straight connections,

connections with ratios larger than 1.3 were ignored. Finally, the

average strength of the connections in an image was computed.

Image Feature Extraction of Corners. The corner feature

was used to denote the complexity of the axon connections. A set

of patterns was defined to search for corners in the binarized axon

strength map. For each image, the sum of intensities of the corners

in the original raw image was calculated. The sum was then

normalized by the square root of the foreground area and denoted

as the corner feature of the image.

Confocal Imaging of Primary Cells and Embryos
For live imaging of primary cells with confocal microscopy,

RNAi conditions were scaled up for use with No. 1 1/2 glass

bottomed 8-well chamber slides (Nunc). Immediately before

imaging, to reduce background fluorescence, the media was

removed and replaced with HL6 physiological solution [75]. Cell

cultures were imaged using a Leica TCS SP2 AOBS confocal

microscope.

For in vivo analysis, 12–24 hour embryos raised at 25uC were

stained, dissected, and mounted as previously reported [76].

Rabbit anti-HRP::Rhodamine (Jackson ImmunoResearch) was

used at a 1:300 dilution, mouse monoclonal antibodies 5B12 [18],

1D4, 22C10 (Developmental Studies Hypbridoma Bank) were

used at 1:5, rabbit anti-Synaptotagmin-1 was used at 1:300. Goat

anti-mouse Alexa 488, goat anti-mouse Alexa 568, and goat anti-

rabbit Alexa 488 (Molecular Probes) were used at 1:400. Embryo

dissections were imaged with a Leica SP2 AOBS confocal

microscope. For labeling of primary cells, mAb BP104 (anti-

Neuroglian, Developmental Studies Hybridoma Bank) was used at

a 1:10 dilution, and rabbit anti-HRP::Rhodamine (Jackson

ImmunoResearch) was used at a 1:300 dilution. Goat anti-mouse

Alexa 488 (Molecular Probes) was used at 1:400.

Mouse in vitro and in vivo Analysis
Cloning of Ran RNAi constructs: Target regions for Ran

shRNA hairpin construction were identified using the Broad

institute RNAi Consortium database http://www.broad.mit.edu/

genome_bio/trc/publicSearchForHairpinsForm.php. Two re-

gions were chosen: (1) CCTTGCTTATTAAAGCCACTA and

(2) CGCATCAGATGTTTAAGGATT. shRNA oligos were

designed using the Ambion psilencer expression vector insert

design tool http://www.ambion.com/techlib/misc/psilencer_

converter.html with a loop sequence of TTCAAGAGA and with

EcoRI and ApaI restriction site overhangs. The complementary

RNAi oligos were annealed at 37uC for 1 hr and ligated overnight

at room temperature into an EcoRI/ApaI digested pSil-GFP (gift

from Shirin Bonni) [77].

The Psil-GFP plasmid is based on the pSil-1.0 vector and uses a

U6 RNA pol III-driven promoter to drive dsRNA and a CMV

promoter that drives the GFP. Clones containing the inserts were

identified by HindIII and BrSG1 restriction digests, sequenced,

and purified for electroporation using an endo-free maxi-prep kit

(Qiagen).

Western Blot analysis of Ran knockdown was done by

Lipofectamine-2000 transfection of Ran and control constructs

into nih-3T3 cells. Cells were cultured for 48, 72 and 96 hour. Cell

extracts were made with a micro-homogenizer using 25 mM

HEPES pH 7.4, 150 mM NaCl, 0.5 mM EDTA, 0.5% triton,

5 mM MgCl2, phosphatase, protease inhibitors, 2 mM PMSF and

1 mM DTT. Extracts were diluted in protein sample buffer and

run on 7.5% PAGE gels using 2 mg of total protein per lane.

Western blot protein quantification was done using the Oddyseum

Infrared system.

For in vivo and in vitro analysis, plasmids were transfected by

electroporation. Briefly, pregnant Swiss-Webster mice were

euthanized at E13.5 and embryos removed. Lateral ventricles

were injected using pulled glass microcapillary needles with

plasmids in a 0.01% fast green solution (Sigma). Electrodes were
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placed on either side of the embryo’s head and 56100 ms square

pulses at 40v were administered at 950 ms intervals using a

BTX830 square-wave pulse generator (Genetronics, Havard

Apparatus).

Dissected brains were embedded live in 2% Low melting point

agarose in HBSS/pen/strep and sectioned using a Leica

vibratome in 250 mm sections that were maintained on organo-

typic culture membranes for 4 days, fixed in 4% paraformalde-

hyde and processed for immunofluorescence. Alternatively,

cortices were cultured for 24 hours followed by dissociation with

papain digestion and trituration using fire polished Pasteur

pipettes. Neurons were plated on 12 mm cover slips at high

density and examined after 4 days.

Immunofluorescence analysis was done using a Leica Confocal

inverted microscope for the explants and an inverted Nikon

fluorescence microscope driven by Metamorph software. Immu-

nostaining of dissociated primary neurons was performed as

previously described [78]. Ran polyclonal antibody (AbCAM

#ab31118) was used at 1 mg/mL. MAP2 monoclonal antibody

(Sigma) was used at 1 mg/mL and Tau1 monoclonal antibody

(Chemicon) was used at 1 mg/mL. Mouse and Rabbit Alexa 594

secondary antibodies (Molecular Probes) were used at 1:400.

Analysis of the number of branches and blebs was done by

counting the number of GFP nuclei and the number of branching

points or blebs present in either dissociated neurons or neurons in

explants where appropriate.

Supporting Information

Figure S1 Loss of Neuroglian immunofluorescence in response

to RNAi. (A, B) Primary neurons labeled with anti-HRP (A) and

anti-Neuroglian (B) shows morphology typical of wild type cultures

and similar profile of immuno-fluorescence. C, D) Primary neuron

culture treated with Neuroglian dsRNA shows aberrant axon

projections when labeled with anti-HRP (C, arrows) and a

corresponding loss of anti-Neuroglian immunoreactivity (D).

Found at: doi:10.1371/journal.pgen.1000111.s001 (1.19 MB TIF)

Figure S2 Design of genome-wide RNAi screen in GFP-labeled

primary neural cells. Images acquired on robotic widefield

fluorescence microscope, live cell cultures are in 384-well plate

format. (A) Wild type control cultures (no dsRNA) show GFP-

positive cell clusters interconnected by well-fasciculated axon

fascicles. (B) Actin dsRNA treated cultures show smaller cell clusters

with weaker connectivity. Axon paths appear abnormally curved

compared to wild types. (C) betaTubulin dsRNA treated cells show

dramatically reduced axon extension compared to wild types. (D)

Schematic of genome-wide RNAi screen. (E) Ran GTPase dsRNA

treated cells show excessive branching compared to wild types.

Experiments in a1, a2, b1, b2, c1, c2, e1, e2 are generated from the

same culture preparation, while experiments in a3, a4, b3, b4, c3,

c4, e3, e4 are generated from a separately prepared culture.

Found at: doi:10.1371/journal.pgen.1000111.s002 (1.63 MB TIF)

Figure S3 Hierarchical cluster of RNAi cell culture image

features. Quantified image features from dsRNA-treated cell

cultures are are represented values on a blue-red heat map. Wild

type control feature values are all white (not shown on hierarchy).

Features quantified are: 1) number of small dots (correspond to

blebs, debris), 2) total number of corners, 3) corners in major

connections between clusters, 4) total number of edges (straight

lines correspond to neurites), 5) edges of major connections, 6) area

of cell body clusters, 7) median value of cell clusters, 8) number of

large cell clusters, 9) number of robust connections between cell

clusters, 10) mean straightness of connections between cell clusters,

11) mean connection strength.

Found at: doi:10.1371/journal.pgen.1000111.s003 (0.55 MB TIF)

Figure S4 Ran immunolabeling of dissociated neuronal culture.

Localization of Ran to the nuclei is shown as expected

(arrowhead). In addition, Ran is also observed to localize to

neuronal processes (arrows).

Found at: doi:10.1371/journal.pgen.1000111.s004 (0.10 MB TIF)

Figure S5 Embryonic abdominal muscle of wild type and

Sec61alpha mutant embryos. Embryos were stained with anti-

MHC to show patterning of muscles. (A) The wild type shows

stereotyped patterns of muscles in abdominal segments. (B)

Sec61alpha k04917 homozygous mutant allele has differentiated

muscles and expression of MHC antigen, as does (C), the

Sec61alpha l(2)SH190 homozygous mutant allele.

Found at: doi:10.1371/journal.pgen.1000111.s005 (3.37 MB TIF)

Table S1 Full genome RNAi screen hits previously character-

ized in neural cells in vivo.

Found at: doi:10.1371/journal.pgen.1000111.s006 (0.04 MB

XLS)

Table S2 Genes showing neural RNAi phenotypes with a single

amplicon.

Found at: doi:10.1371/journal.pgen.1000111.s007 (0.02 MB

XLS)

Acknowledgments

We thank the late S. Benzer, S. Hou, U. Tepass, and Bloomington Stock

Center for providing fly stocks and antibodies, and J. Bai for continued

collaboration on primary cell culture techniques. We are grateful for the

technical support provided by staff at the Drosophila RNAi Screening

Center, R. Binari, B. Decius, and members of the Perrimon Lab. We also

thank D. Kim, B. Mathey-Prévot and J. Schulte for critical comments on

the manuscript.

Author Contributions

Conceived and designed the experiments: KS SL JL. Performed the

experiments: KS SL JL LM. Analyzed the data: KS PH SL JL.

Contributed reagents/materials/analysis tools: PH CW NP. Wrote the

paper: KS. Postdoctoral supervisors: CW NP.

References

1. Schmid A, Schindelholz B, Zinn K (2002) Combinatorial RNAi: a method for

evaluating the functions of gene families in Drosophila. Trends Neurosci 25:

71–74.

2. Ivanov AI, Rovescalli AC, Pozzi P, Yoo S, Mozer B, et al. (2004) Genes required

for Drosophila nervous system development identified by RNA interference.

Proc Natl Acad Sci U S A 101: 16216–16221.

3. Mello CC, Conte D Jr (2004) Revealing the world of RNA interference. Nature

431: 338–342.

4. Tijsterman M, Plasterk RH (2004) Dicers at RISC; the mechanism of RNAi.

Cell 117: 1–3.

5. Carpenter AE, Sabatini DM (2004) Systematic genome-wide screens of gene

function. Nat Rev Genet 5: 11–22.

6. Echeverri CJ, Perrimon N (2006) High-throughput RNAi screening in cultured

cells: a user’s guide. Nat Rev Genet 7: 373–384.

7. Kanuka H, Kuranaga E, Hiratou T, Igaki T, Nelson B, et al. (2003) Cytosol-

endoplasmic reticulum interplay by Sec61alpha translocon in polyglutamine-

mediated neurotoxicity in Drosophila. Proc Natl Acad Sci U S A 100:

11723–11728. Epub 12003 Sep 11722.

8. Hsiao PW, Lin DL, Nakao R, Chang C (1999) The linkage of Kennedy’s

neuron disease to ARA24, the first identified androgen receptor

polyglutamine region-associated coactivator. J Biol Chem 274: 20229–

20234.

9. Seecof RL, Unanue RL (1968) Differentiation of embryonic Drosophila cells in

vitro. Exp Cell Res 50: 654–660.

Full Genome RNAi Analysis in Primary Neurons

PLoS Genetics | www.plosgenetics.org 15 July 2008 | Volume 4 | Issue 7 | e1000111



10. Seecof RL, Teplitz RL, Gerson I, Ikeda K, Donady J (1972) Differentiation of
neuromuscular junctions in cultures of embryonic Drosophila cells. Proc Natl

Acad Sci U S A 69: 566–570.

11. Seecof RL, Donady JJ, Teplitz RL (1973) Differentiation of Drosophila

neuroblasts to form ganglion-like clusters of neurons in vitro. Cell Differ 2:

143–149.

12. Gerson I, Seecof RL, Teplitz RL (1976) Ultrastructural differentiation during

Drosophila neurogenesis in vitro. J Neurobiol 7: 447–455.

13. Kuppers-Munther B, Letzkus JJ, Luer K, Technau G, Schmidt H, et al. (2004) A

new culturing strategy optimises Drosophila primary cell cultures for structural
and functional analyses. Dev Biol 269: 459–478.

14. Kim YT, Wu CF (1987) Reversible blockage of neurite development and growth

cone formation in neuronal cultures of a temperature-sensitive mutant of
Drosophila. J Neurosci 7: 3245–3255.

15. Kim YT, Wu CF (1991) Distinctions in growth cone morphology and motility
between monopolar and multipolar neurons in Drosophila CNS cultures.

J Neurobiol 22: 263–275.

16. Forni JJ, Romani S, Doherty P, Tear G (2004) Neuroglian and FasciclinII can

promote neurite outgrowth via the FGF receptor Heartless. Mol Cell Neurosci

26: 282–291.

17. Sakai K, Okamoto H, Hotta Y (1989) Pharmacological characterization of

sodium channels in the primary culture of individual Drosophila embryos:
neurons of a mutant deficient in a putative sodium channel gene. Cell Differ Dev

26: 107–118.

18. Fredieu JR, Mahowald AP (1989) Glial interactions with neurons during
Drosophila embryogenesis. Development 106: 739–748.

19. Hodges DD, Lee D, Preston CF, Boswell K, Hall LM, et al. (2002) tipE regulates
Na+-dependent repetitive firing in Drosophila neurons. Mol Cell Neurosci 19:

402–416.

20. O’Dowd DK (1995) Voltage-gated currents and firing properties of embryonic

Drosophila neurons grown in a chemically defined medium. J Neurobiol 27:

113–126.

21. Ivanov AI, Rovescalli AC, Pozzi P, Yoo S, Mozer B, et al. (2004) Genes required

for Drosophila nervous system development identified by RNA interference.
Proc Natl Acad Sci U S A 101: 16216–16221. Epub 12004 Nov 16218.

22. Koizumi K, Higashida H, Yoo S, Islam MS, Ivanov AI, et al. (2007) RNA
interference screen to identify genes required for Drosophila embryonic nervous

system development. Proc Natl Acad Sci U S A 104: 5626–5631. Epub 2007

Mar 5621.

23. Paradis S, Harrar DB, Lin Y, Koon AC, Hauser JL, et al. (2007) An RNAi-based

approach identifies molecules required for glutamatergic and GABAergic
synapse development. Neuron 53: 217–232.

24. Flockhart I, Booker M, Kiger A, Boutros M, Armknecht S, et al. (2006)
FlyRNAi: the Drosophila RNAi screening center database. Nucleic Acids Res

34: D489–494.

25. Perrimon N, Mathey-Prevot B (2007) Applications of high-throughput RNA
interference screens to problems in cell and developmental biology. Genetics

175: 7–16.

26. Kulkarni MM, Booker M, Silver SJ, Friedman A, Hong P, et al. (2006) Evidence

of off-target effects associated with long dsRNAs in Drosophila melanogaster

cell-based assays. Nat Methods 3: 833–838.

27. Ma Y, Creanga A, Lum L, Beachy PA (2006) Prevalence of off-target effects in

Drosophila RNA interference screens. Nature 443: 359–363. Epub 2006 Sep
2010.

28. Baillat G, Moqrich A, Castets F, Baude A, Bailly Y, et al. (2001) Molecular
cloning and characterization of phocein, a protein found from the Golgi

complex to dendritic spines. Mol Biol Cell 12: 663–673.

29. Diefenbach TJ, Guthrie PB, Stier H, Billups B, Kater SB (1999) Membrane
recycling in the neuronal growth cone revealed by FM1-43 labeling. J Neurosci

19: 9436–9444.

30. van Kesteren RE, Spencer GE (2003) The role of neurotransmitters in neurite

outgrowth and synapse formation. Rev Neurosci 14: 217–231.

31. Lauder JM, Bloom FE (1974) Ontogeny of monoamine neurons in the locus

coeruleus, Raphe nuclei and substantia nigra of the rat. I. Cell differentiation.

J Comp Neurol 155: 469–481.

32. Lauder JM (1990) Ontogeny of the serotonergic system in the rat: serotonin as a

developmental signal. Ann N Y Acad Sci 600: 297–313. discussion 314.

33. Filogamo G, Marchisio PC (1971) Acetylcholine system and neural develop-

ment. Neurosci Res (N Y) 4: 29–64.

34. Budnik V, White K (1987) Genetic dissection of dopamine and serotonin

synthesis in the nervous system of Drosophila melanogaster. J Neurogenet 4:

309–314.

35. Gomez TM, Spitzer NC (2000) Regulation of growth cone behavior by calcium:

new dynamics to earlier perspectives. J Neurobiol 44: 174–183.

36. Tang F, Dent EW, Kalil K (2003) Spontaneous calcium transients in developing

cortical neurons regulate axon outgrowth. J Neurosci 23: 927–936.

37. Gomez TM, Spitzer NC (1999) In vivo regulation of axon extension and

pathfinding by growth-cone calcium transients. Nature 397: 350–355.

38. Homma K, Kitamura Y, Ogawa H, Oka K (2006) Serotonin induces the
increase in intracellular Ca2+ that enhances neurite outgrowth in PC12 cells via

activation of 5-HT3 receptors and voltage-gated calcium channels. J Neurosci
Res 84: 316–325.

39. Zhang P, Dilley C, Mattson MP (2007) DNA damage responses in neural cells:
Focus on the telomere. Neuroscience 145: 1439–1448. Epub 2007 Jan 1434.

40. Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays
26: 882–893.

41. Visochek L, Steingart RA, Vulih-Shultzman I, Klein R, Priel E, et al. (2005)
PolyADP-ribosylation is involved in neurotrophic activity. J Neurosci 25:

7420–7428.

42. Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, et al. (2003)

Disruption of axonal transport by loss of huntingtin or expression of pathogenic

polyQ proteins in Drosophila Polyglutamines stop traffic: axonal transport as a
common target in neurodegenerative diseases. Neuron 40: 25–40.

43. Kazemi-Esfarjani P, Benzer S (2000) Genetic suppression of polyglutamine
toxicity in Drosophila. Science 287: 1837–1840.

44. Kanuka H, Hiratou T, Igaki T, Kanda H, Kuranaga E, et al. (2005) Gain-of-
function screen identifies a role of the Sec61alpha translocon in Drosophila

postmitotic neurotoxicity. Biochim Biophys Acta 1726: 225–237. Epub 2005 Sep
2027.

45. Oh SW, Kingsley T, Shin HH, Zheng Z, Chen HW, et al. (2003) A P-element
insertion screen identified mutations in 455 novel essential genes in Drosophila.

Genetics 163: 195–201.

46. Sepp KJ, Auld VJ (2003) Reciprocal interactions between neurons and glia are

required for Drosophila peripheral nervous system development. J Neurosci 23:

8221–8230.

47. Sepp KJ, Schulte J, Auld VJ (2001) Peripheral glia direct axon guidance across

the CNS/PNS transition zone. Dev Biol 238: 47–63.

48. Younossi-Hartenstein A, Hartenstein V (1993) The role of the tracheae and

musculature during pathfinding of Drosophila embryonic sensory axons. Dev
Biol 158: 430–447.

49. Pemberton LF, Paschal BM (2005) Mechanisms of receptor-mediated nuclear
import and nuclear export. Traffic 6: 187–198.

50. Dasso M (2001) Running on Ran: nuclear transport and the mitotic spindle. Cell
104: 321–324.

51. Koizumi K, Stivers C, Brody T, Zangeneh S, Mozer B, et al. (2001) A search for
Drosophila neural precursor genes identifies ran. Dev Genes Evol 211: 67–75.

52. Lopez-Casas PP, Lopez-Fernandez LA, Krimer DB, del Mazo J (2002) Ran
GTPase expression during early development of the mouse embryo. Mech Dev

113: 103–106.

53. Luo L, Hensch TK, Ackerman L, Barbel S, Jan LY, et al. (1996) Differential

effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and

spines. Nature 379: 837–840.

54. Dent EW, Tang F, Kalil K (2003) Axon guidance by growth cones and

branches: common cytoskeletal and signaling mechanisms. Neuroscientist 9:
343–353.

55. Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth
cone motility and axon guidance. Neuron 40: 209–227.

56. Matthews KA, Kaufman TC, Gelbart WM (2005) Research resources for
Drosophila: the expanding universe. Nat Rev Genet 6: 179–193.

57. Arendt D, Nubler-Jung K (1999) Comparison of early nerve cord development
in insects and vertebrates. Development 126: 2309–2325.

58. Rothberg JM, Hartley DA, Walther Z, Artavanis-Tsakonas S (1988) slit: an
EGF-homologous locus of D. melanogaster involved in the development of the

embryonic central nervous system. Cell 55: 1047–1059.

59. Seeger M, Tear G, Ferres-Marco D, Goodman CS (1993) Mutations affecting

growth cone guidance in Drosophila: genes necessary for guidance toward or

away from the midline. Neuron 10: 409–426.

60. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, et al.

(2000) Comparative genomics of the eukaryotes. Science 287: 2204–2215.

61. Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics.

Nat Rev Genet 6: 9–23.

62. Bilen J, Bonini NM (2005) Drosophila as a model for human neurodegenerative

disease. Annu Rev Genet 39: 153–171.

63. Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, et al. (2001) Histone

deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in
Drosophila. Nature 413: 739–743.

64. Lee WC, Yoshihara M, Littleton JT (2004) Cytoplasmic aggregates trap
polyglutamine-containing proteins and block axonal transport in a Drosophila

model of Huntington’s disease. Proc Natl Acad Sci U S A 101: 3224–3229. Epub

2004 Feb 3220.

65. Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, et al. (2004)

SUMO modification of Huntingtin and Huntington’s disease pathology. Science
304: 100–104.

66. Ling SC, Fahrner PS, Greenough WT, Gelfand VI (2004) Transport of
Drosophila fragile6mental retardation protein-containing ribonucleoprotein

granules by kinesin-1 and cytoplasmic dynein. Proc Natl Acad Sci U S A 101:
17428–17433. Epub 12004 Dec 17426.

67. Park SS, Lee D (2006) Selective loss of dopaminergic neurons and formation of
Lewy body-like aggregations in alpha-synuclein transgenic fly neuronal cultures.

Eur J Neurosci 23: 2908–2914.

68. Cantera R, Luer K, Rusten TE, Barrio R, Kafatos FC, et al. (2002) Mutations in
spalt cause a severe but reversible neurodegenerative phenotype in the

embryonic central nervous system of Drosophila melanogaster. Development
129: 5577–5586.

69. Duncan JE, Goldstein LS (2006) The genetics of axonal transport and axonal
transport disorders. PLoS Genet 2: e124.

70. Paladi M, Tepass U (2004) Function of Rho GTPases in embryonic blood cell
migration in Drosophila. J Cell Sci 117: 6313–6326.

Full Genome RNAi Analysis in Primary Neurons

PLoS Genetics | www.plosgenetics.org 16 July 2008 | Volume 4 | Issue 7 | e1000111



71. Kanuka H, Kuranaga E, Hiratou T, Igaki T, Nelson B, et al. (2003) Cytosol-

endoplasmic reticulum interplay by Sec61alpha translocon in polyglutamine-

mediated neurotoxicity in Drosophila. Proc Natl Acad Sci U S A 100:

11723–11728.

72. Boutros M, Kiger AA, Armknecht S, Kerr K, Hild M, et al. (2004) Genome-

wide RNAi analysis of growth and viability in Drosophila cells. Science 303:

832–835.

73. Agaisse H, Burrack LS, Philips JA, Rubin EJ, Perrimon N, et al. (2005) Genome-

wide RNAi screen for host factors required for intracellular bacterial infection.

Science 309: 1248–1251.

74. Wang Z, Jenkin M, eds (1992) Using complex Gabor filters to detect and localize

edges and bars: World Scientific Press, Singapore. pp 151–170.

75. Macleod GT, Suster ML, Charlton MP, Atwood HL (2003) Single neuron

activity in the Drosophila larval CNS detected with calcium indicators.
J Neurosci Methods 127: 167–178.

76. Halter DA, Urban J, Rickert C, Ner SS, Ito K, et al. (1995) The homeobox gene

repo is required for the differentiation and maintenance of glia function in the
embryonic nervous system of Drosophila melanogaster. Development 121:

317–332.
77. Konishi Y, Stegmuller J, Matsuda T, Bonni S, Bonni A (2004) Cdh1-APC

controls axonal growth and patterning in the mammalian brain. Science 303:

1026–1030. Epub 2004 Jan 1028.
78. Deuel TA, Liu JS, Corbo JC, Yoo SY, Rorke-Adams LB, et al. (2006) Genetic

interactions between doublecortin and doublecortin-like kinase in neuronal
migration and axon outgrowth. Neuron 49: 41–53.

Full Genome RNAi Analysis in Primary Neurons

PLoS Genetics | www.plosgenetics.org 17 July 2008 | Volume 4 | Issue 7 | e1000111


