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MAPK SIGNALING

Proteomic and Functional Genomic Landscape
of Receptor Tyrosine Kinase and Ras to
Extracellular Signal-Regulated Kinase Signaling

Adam A. Friedman,'>® George Tucker,* Rohit Singh,* Dong Yan,?
Arunachalam Vinayagam,' Yanhui Hu,"? Richard Binari,"? Pengyu Hong,’
Xiaoyun Sun,® Maura Porto,'? Svetlana Pacifico,® Thilakam Murali,®

Russell L. Finley Jr.,° John M. Asara,”® Bonnie Berger,*° Norbert Perrimon'-?*

Characterizing the extent and logic of signaling networks is essential to understanding specificity in such
physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis
and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of
large numbers of genes that regulate signaling pathways, but these screens cannot provide network
structure directly. We describe an integrated network around the canonical receptor tyrosine kinase
(RTK)-Ras—extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining
parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity
purification—mass spectrometry. We found that only a small fraction of the total number of PPl or RNAi
screen hits was isolated under all conditions tested and that most of these represented the known
canonical pathway components, suggesting that much of the core canonical ERK pathway is known.
Because most of the newly identified regulators are likely cell type— and RTK-specific, our analysis
provides a resource for understanding how output through this clinically relevant pathway is regulated
in different contexts. We report in vivo roles for several of the previously unknown regulators, including
CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine—protein phosphatase
6 complex; the Drosophila ortholog of TeplV, a glycophosphatidylinositol-linked protein mutated in human

cancers; CG6453, a noncatalytic subunit of glucosidase Il; and Rtf1, a histone methyltransferase.

INTRODUCTION

Intracellular signaling mediated by growth factor—stimulated receptor
tyrosine kinases (RTKSs), such as those activated by insulin or epider-
mal growth factor (EGF), acting through Ras to extracellular signal—
regulated kinases (ERKSs) is required for metazoan development and
physiology. Mutations in genes encoding components of this conserved
signaling network, the RTK-Ras-ERK pathway, have been repeatedly
identified as drivers in multiple malignancies. Understanding the hier-
archical relationships among pathway regulators can have profound
clinical significance, as exemplified by Kras genotype in determining
responsiveness to inhibitors of the EGF receptor (EGFR) (/).

A complete understanding of cell signaling through this pathway re-
quires identification of (i) all components of the system, (ii) the quantitative
contribution of these components to various signaling outputs, and (iii) the
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hierarchical relationships, including physical connections, between these
components. Systematic functional genetic approaches, such as genome-
wide RNA interference (RNAI) screening used to identify previously unknown
signaling genes, are inferential in that they do not distinguish between di-
rect and indirect effects. Large-scale protein-protein interaction (PPI) map-
ping complements genetic studies by revealing physical associations, but
fails to reveal the function of interacting proteins or the functional conse-
quences of the interactions. Separate such “systems-level” functional ge-
nomic and interactome studies in the past few years have revealed that
signaling is likely propagated within large networks of hundreds of proteins
and thus have challenged linear cascade models derived from traditional
reductive approaches (2). However, each systematic screening approach
performed separately suffers from inherent technical limitations of the
methods used, leading to false negatives and positives, restricting the com-
prehensiveness of pathway regulator discovery.

We have previously described an antibody-based, genome-wide RNAi
screen assay for ERK activity in Drosophila cells after insulin stimulus
(3). This assay relies on an antibody that recognizes phosphorylated Dro-
sophila ERK (dpERK). We showed specific examples from secondary
screens of a small subset of genes that were required downstream of in-
sulin receptor (InR), but not of the EGFR, for activation of ERK in par-
ticular cell types, suggesting that many potential components of this
pathway may have been missed by a single primary screen (3). Although
multiple RTKs can signal through Ras to ERK, their output is context-
dependent despite the apparent similarity in signal propagation through
the core pathway (4-6).

A combined systematic approach using complementary functional ge-
nomic and interactome technologies would be more likely to uncover
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direct regulators and more completely describe the landscape of a signal-
ing pathway (7). We performed multiple genome-wide RNAI screens in
parallel to generating a tandem affinity purification—mass spectrometry
(TAP-MS)-based PPI network surrounding the canonical pathway compo-
nents of the RTK-Ras-ERK signaling pathway, using data from cells
responding to insulin or EGE Although we identified several previously
unknown pathway regulators, the functional genomic and interactome data
sets suggest that much of the core canonical pathway is complete.

RESULTS

A functional genomic compendium of

RTK-Ras-ERK signaling

To comprehensively discover genes that regulate ERK signaling output
and to identify other specificity-generating proteins, we conducted four
systematic, cell-based RNAI screens for regulators of EGF-stimulated
ERK activation in two stable Drosophila cell lines expressing EGFR,
S2R+mtDER, and Kc167mtDER (fig. S1, A and B). These four screens
combined with our two previously published screens performed with S2R+
cells that were unstimulated (baseline) or stimulated with insulin (4) inter-
rogated >20,000 double-stranded RNAs (dsRNAs) targeting roughly
14,000 Drosophila genes. We compared all six primary screens, divided
into three groups by stimulus (insulin, EGF) and cell line (S2R+, Kc)
(Fig. 1A). These screens uncovered 2677 annotated genes, in addition to
756 unannotated predicted genes (Fig. 1A and table S1). As expected, these
genes include most of the known canonical pathway-associated genes
(table S5). We identified both EIF4AIIl and mago (table S1) as positive
regulators in our RNAI screen in Kc cells and these two genes were also
found in an RNAI screen for regulators of the mitogen-activated protein
kinase (MAPK) pathway in Drosophila S2 cells (8).

Gene Ontology (GO) annotation of the hits from the RNAI screens
showed expected enrichment for processes controlled by RTK-Ras-ERK
signaling, including tracheal development, photoreceptor differentiation,
imaginal disc morphogenesis, and hematopoiesis; genes controlling mito-
sis, neuronal differentiation, cell motility, female gamete generation, and
SUMO (small ubiquitin-like modifier protein) binding were also enriched
in the hits from the RNAI screens (table S2). The hits from the RNAi
screens were also significantly enriched for proteins conserved in humans
and implicated in a human disease (P < 3.5 x 10~° and 9.8 x 10~*, respec-
tively), implying that many of the newly identified regulators are also in-
volved in mammalian MAPK signaling. Human orthologs had stronger
RNAI scores on average (P < 0.001), suggesting that genes with more cen-
tral roles in the pathway have been conserved.

We observed distinct subsets of genes isolated in the primary RNAi
screens under specific cell or RTK-stimulus contexts (fig. S1C). We were
also able to identify genes that were common to both cell types under both
stimulus conditions (Fig. 1B). These genes were quantitatively stronger
regulators than the remaining hits (fig. S1D). Our systematic screens
permitted global observation of the processes regulating specificity; com-
pared to all hits from the RNAI screens, those identified in the insulin screen
were enriched for cytoskeletal genes and cell cycle processes (P < 1.3 x
107 and 0.03, respectively), whereas transcriptional and peptidase activ-
ities were enriched in the EGF screen in Kc cells (P <4 x 10~* and 0.02,
respectively).

Distinct subsets of genes were specific to insulin or EGF signaling in
either cell type or were regulated by insulin or EGF in both cell types (table
S3). Signaling downstream of the InR activates both ERK and Akt sig-
naling pathways; we confirmed that genes encoding components of the
Akt-Tor pathway, including /nR itself, PTEN, Akt, Tor, and gig (Tsc2),
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were insulin-specific regulators of ERK. This insulin-specific regulation
of ERK and the Akt-Tor pathway is likely mediated through feedback
from S6 kinase to InR (9). (Throughout the text, where different from
the Drosophila gene or protein names, mammalian common names or ab-
breviations of the proteins are shown after the names or abbreviations for
these components in Drosophila.) Other genes specifically associated with
InR signaling included PRL-1, encoding a phosphatase that can transform
cells (10); the kinase-encoding gene Takl; and CG9468 and CG5346,
which are genes predicted to encode proteins with o-mannosidase and iron
oxygenase activities, respectively. Genes specifically associated with EGF
signaling included EGFR itself, and those encoding several components
potentially involved in receptor localization, or down-regulation, or both,
including Snap, encoding a protein required for vesicular transport;
CG7324, encoding a Rab guanosine triphosphatase (GTPase)-activating
protein; and RSG7, encoding a putative G protein [heterotrimeric guano-
sine triphosphate (GTP)-binding protein] y subunit that also interacts with
Snapin, a component of the SNARE complex (/7). Because these genes
were associated with EGF signaling but not insulin signaling, this suggests
that these are required for EGFR but not InR localization.

An RTK-Ras-ERK interaction network

Many of the previously unknown regulators identified in the RNAI
screens may act indirectly through general cellular processes or through
multiple levels of transcriptional feedback. Furthermore, RNAi screens
suffer from off-target effects even after computational filtering and use
of multiple RNAI reagents for each gene (/2). PPI mapping provides an
orthogonal representation of network regulators compared to functional
genomic approaches because it reveals physical associations. Although
large-scale yeast two-hybrid (Y2H) screening can reveal potential PPIs
with high accuracy (/3) and has been performed on a large scale for
MAPK-related proteins (/4), Y2H cannot detect interactions that may rely
on regulatory posttranslational modifications that occur in endogenous
signaling contexts. Large-scale TAP-MS has been used to discover PPIs,
most comprehensively in yeast (/5—/7) and in human cells in “pathway-
oriented” mapping of tumor necrosis factor—o (TNFa) signaling (/8), Wnt
signaling (3), and autophagy (/9).

We used TAP-MS to capture the dynamic “mini-interactome” surround-
ing 15 well-recognized, conserved canonical components of the RTK-Ras-
ERK pathway: InR, PDGF (platelet-derived growth factor)- and VEGF
(vascular endothelial cell growth factor) receptor—related (PVR), EGFR,
the adaptors Drk (Grb2) and Dos (Gab), the GTPase Ras85D, the Ras
GTP exchange factor Sos, the cytoplasmic tyrosine kinase Src42A, the
GTPase-activating protein Gap1, the phosphatase Csw (Shp2), the MAPK
kinase kinase Phl (Raf), the MAPK kinase Dsor] [mitogen-activated or
extracellular signal-regulated protein kinase kinase (MEK)], the scaf-
folds Ksr and Cnk, and the MAPK R1 (ERK). These 15 proteins served
as the “baits” in the affinity purification assay. The proteins and a control
were expressed in S2R+ cells with TAP vectors (20) and lysates prepared at
baseline (unstimulated cells) or after stimulation with insulin or EGE. Two
or more biological replicates were performed for each bait and condition.
Interacting proteins were determined by TAP and microcapillary liquid
chromatography—tandem MS (LC-MS/MS). A total of 54,339 peptides
were identified representing 12,208 proteins, encompassing an unfiltered
network of 5009 interactions among 1188 individual proteins (table S4).
Among the most abundant proteins identified in replicate pull-downs
and absent in control preparations were other known RTK-Ras-ERK ca-
nonical proteins. A network based on the observed interactions among
these canonical proteins recapitulates many of the known RTK-Ras-ERK
signaling pathway interactions (Fig. 1C), validating the sensitivity of our
TAP-MS approach in robustly identifying pathway interactors.

Vol 4 Issue 196 rs10 2

TT0Z ‘22 1800100 uo B1o Bewasusios ayls woly papeojumoq


http://stke.sciencemag.org

RESEARCH RESOURCE

A
S2R+ insulin
Baseline and
10’ stimulus
1143 genes
B
C

Kc167mtDER EGF
10’and 30’ stimulus
1405 genes

Global RTK-Ras-ERK

regulators

3
.
£9 0
Yoo
w2835 0
ScEgad
3300sy W°
SEEEQQ
ddrdeE
ARARA2 2
PVR
Csw (Shp2)
Drk (Grb2)
Dos
Sos
Ras1
Phl (Raf)
Dsor1 (MEK)
Ksr
Cnk
PTP-ER
CG6842
CG14119
CG31763
CG15060
Src42A
CG31302
Puc
Socs36E
skd
CG7288
CG8389

-5

260 S2R+ mtDER EGF
543 469 Baseline and
10’ stimulus
1101 genes
113
920

Pi3K92E Pi3K21B

Maximum RNAi score

Fig. 1. Parallel RTK-Ras-ERK genome-wide RNAI screens in Drosophila.
(A) Comparison of six RNAI screens grouped into three experimental
categories based on ligand stimulus or cell type, with number of an-
notated genes in each category. Note that S2R+ cells used for EGF stim-
ulation express EGFR for robust ERK activation in response to EGF;
thus, a “baseline” RNAIi screen was performed in these cells in the ab-
sence of EGF in addition to the baseline performed previously in the
EGFR-negative S2R+ cells. The total gene set is enriched for genes with
human orthologs and for known components of the canonical signaling
cassette. (B) A total of 227 genes appeared in all three groups, repre-
senting a common or “global” set of RTK-Ras-ERK regulators, which in-
cluded those encoding proteins in the canonical cascade (top array
graph). Examples of other global regulators are shown in the lower array
graph. Genes are listed using common abbreviations, with mammalian
names listed in parentheses when different from Drosophila. Color rep-
resents average Z score in each primary RNAi screen. (C) Many known
canonical interactions are recapitulated by the TAP-MS analysis, including
those involving adaptors (Drk-Sos), the Phl activation complex (Phl-Dsor1,
PhI-RI, Phl-Ksr, and Ksr-Cnk), and InR with the PI3K subunits p110 (PISK92E)
and p60 (p85 ortholog, PIBK21B). Red edges denote those found both in
our study and in MasterNet, a literature-based compilation of previously
known PPIs. The gray edge denotes those not found in MasterNet. Edge
thickness represents SAINT score. Circles represent prey; rectangles
represent baits.

Raw TAP-MS data often contain sticky proteins found in control prep-
arations. To provide a ranked list of the most specific pathway interactors
by filtering out these sticky proteins, we applied the Significance Analysis
of Interactome (SAINT) method to our PPI data set (/5). Using a SAINT
cutoff of 0.83 and false discovery rate (FDR) of 7.2%, we generated a
filtered PPI network of 386 interactions among 249 proteins surrounding
the canonical components of the RTK-Ras-ERK signaling pathway (Fig. 2
and table S4). We evaluated our PPI network by comparing it with various
literature-derived physical interaction networks (fig. S2, A and B). For this
network comparison, we generated a master physical interaction network
(MasterNet) composed of five different types of networks (see Materials
and Methods). Our filtered network is significantly overrepresented in the
MasterNet, with 29% overlap, compared to 17% for the excluded proteins;
the canonical network has a 97% overlap with MasterNet. SAINT scores
were highly correlated with appearance in literature data sets, implying
that the PPI network as filtered by SAINT represents high-confidence
pathway interactors (fig. S2C). Of the literature-derived networks, appear-
ance in the Drosophila binary PPI data set most closely correlated with
higher SAINT scores (fig. S2D).

Using traditional coimmunoprecipitation techniques and quantita-
tive Western blotting, we corroborated selected previously unknown
interactions (fig. S3). Among these, we verified an ERK interaction with
the cyclin-dependent kinase cdc2c (CDK2), as reported for mammalian
cells (21), implying that ERK can directly regulate the cell cycle through
this interaction. Many of the proteins that interacted with multiple RTKs
were adaptors (table S4). A notable exception was CG10916, which was
one of the few common interactors of multiple RTKs (InR, PVR, and
EGFR) that was not an adaptor (fig. S3, A and B). Thus, individual RTKs
likely recruit distinct complexes during signaling and may compete for a
common set of canonical interactors. As a negative regulator of ERK
activation and a predicted RING domain—containing protein, CG10916
may be involved in receptor degradation or down-regulation of RTKSs.
We also found that some interactions below our conservative SAINT
threshold of 0.83 could be verified by coimmunoprecipitation (fig. S3C),
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suggesting that the true size of the network may be larger than the cutoff
we chose.

On the basis of GO classifications, we found that the filtered PPI net-
work was enriched in genes encoding regulators of Ras signaling, signaling
by the RTKs Sevenless and Torso, and R7 photoreceptor differentiation, all
processes known to involve ERK activation, and also those encoding pro-

Maximum RNAi score
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Iéél? [ ctp\

szs 14D
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teins associated with mitosis, the cytoskeleton, axis specification, oogenesis,
kinase activity, and SUMO binding (table S2). Compared to the total fil-
tered network, proteins interacting with Drk (Grb2) were enriched for
GO terms associated with epithelium development and cell fate (P <
0.02 for both), but otherwise individual bait networks were representa-
tive of the entire network. As with the RNAI hits, our filtered PPI network
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Fig. 2. TAP-MS PPI RTK-Ras-ERK signaling network. Filtered PPl map
of RTK-Ras-ERK signaling in Drosophila, including primary RNAi
screen scores, if present. Z score RNAI result describes negative
regulators (yellow) and positive regulators (blue). Edge thickness de-
notes SAINT score, a measure of interaction confidence. Red edges
denote those found both in our study and in MasterNet, a literature-
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Rl(cn*3K ‘

based compilation of previously known PPls. Edge thickness repre-
sents SAINT score. Circles represent prey; rectangles represent baits.
The size of the node correlates with the number of RNAi screens from
which the proteins were isolated. See table S4 for details of all node
and edge parameters and names of the proteins identified as pathway
interactors.
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was enriched for genes conserved in humans and in human diseases (P <
54 x 107" and P < 4.6 x 107>, respectively).

Feedback regulation is a mechanism of ensuring pathway robustness
(22). Several studies have examined the transcriptional responses to RTK-
Ras-ERK signaling stimulation or perturbation in vivo (23-25). We culled
genes in these studies responsive to pathway modulation and overlaid them
with our PPI data set. We found that the expression of 25% of the genes for
these interactors was changed in response to pathway modulation, a sig-
nificantly enriched proportion (P < 2.4 x 10”%; table S4 and Fig. 3A). These
genes are strong candidates encoding mediators of feedback regulation
of RTK-Ras-ERK signaling. Among these were several ribosomal genes
(for example, RpL6, RpL23A4, RpL27, RpS18, and RpS30) that exhibited
reduced expression in response to pathway activation (Fig. 3A) and that
were isolated as negative regulators in the RNAI screens, implying feedback
amplification through inhibition of translational repression. These genes
also had negatively correlated gene expression with their canonical path-
way interactors in published gene expression studies (Fig. 3B).

During assembly of the RTK-Ras-ERK interactome, we identified
complexes under baseline, insulin-stimulated, and EGF-stimulated con-
ditions to find pathway interactors and to study the dynamics of complex
assembly and disassembly, using quantitative label-free proteomics (26).
Previous systematic evaluation of dynamics in interactomes has been
limited to individual proteins; for example, one study identified dynamic
interactors of ERK (27). Using the SAINT scores at baseline and stimu-
lated conditions, we assembled interactomes of proteins with a high prob-
ability of a dynamic interaction with the canonical baits in response to
insulin (Fig. 4A) or EGF stimulation (Fig. 4B). We observed several
expected interaction dynamics, including the association of subunits of

A Rii30 CG3731
p

ct
Pi3K92E
Pp2B-14D InR

Egfr

CG6686

Hsc70-3

Map60
RpL9 Imp
Mcm7 CG10722
PO RpS20
RpL32

Genes induced under pathway stimulation

Genes suppressed under pathway stimulation

Fig. 3. Additional analysis of the PPl network. (A) Nodes in the PPI net-
work that were also regulated by pathway output, as mined from in vivo
transcriptome analyses. Blue nodes were encoded by genes that were
down-regulated by pathway output; yellow nodes were up-regulated. (B)
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phosphatidylinositol 3-kinase (PI3K) with InR after insulin stimulus, which
likely occurs through the adaptor Chico (IRS) and association of the adap-
tor Drk (Grb2) with EGFR after EGF stimulus (table S4). Our global anal-
ysis showed that proteins that interacted with the adaptor Dos were more
likely to associate than dissociate under insulin stimulus, whereas those
that interacted with Drk (Grb2) did not significantly change on the basis
of SAINT probabilities. EGFR interactors dissociated when cells were
stimulated with insulin. Upon EGF stimulus, interactors with Cnk, Dsor1,
Gapl, and Ksr all preferentially dissociated, whereas Phl (Raf) interactors
associated (Fig. 4B).

An integrated map of RTK-Ras-ERK signaling

We overlaid the functional genomic data from our six systematic RNAi
screens for ERK activation with the TAP-MS network structural data
(Fig. 2). Nearly half of the proteins (119) of the filtered PPI network were
encoded by genes that scored in the RNAIi screens, which represented a
significant enrichment over the genome for regulators of this pathway
(19%; P <7 x 10"*) and was an overlap higher than achieved with a more
directed RNAI screening of TNFo pathway interactors (/). Thirty-two
percent (38 of 119) of the interacting proteins were isolated from RNAi
screens in both cell types and after both stimuli (Fig. 4C), whereas if all
of the hits from all of the RNAI screens were counted, then only 8% were
isolated from both cell types and stimuli.

Together, our RNAi and PPI experiments identified hundreds of pre-
viously unknown RTK-Ras-ERK regulators, as well as a core network of
genes that were identified with both methods. Because visualization, nav-
igation, and comprehension of complex networks of interacting proteins
with functional data can be challenging, we provide our resource of

B ctp

Pi3K92 ‘30
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Anti-correlated expression

@ Correlated expression

Correlation between expression of the genes encoding the baits and
preys. Orange edges denote interacting partners that exhibited an
inverse correlation in expression; blue edges denote interacting part-
ners that exhibited positive correlation in expression.
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Fig. 4. Dynamics in the RTK-Ras-ERK signaling
network. (A) Subset of total PPl network with a
SAINT-based probability of dynamic interaction
>0.8 by comparing baseline to insulin condition.
(B) Subset of PPI network with dynamic interactions
under EGF stimulus. In both (A) and (B), orange
lines indicate protein association; blue lines denote
dissociation. (C) “Core” network of PPls that were
identified in all three RNAI screen sets. Edge thick-
ness denotes SAINT score, a measure of interac-
tion confidence. Red edges denote those found
both in our study and in MasterNet, a literature-
based compilation of previously known PPls. Edge
thickness represents SAINT score. Circles repre-
sent prey; rectangles represent baits. The size of
the node correlates with the number of RNAI
screens from which the proteins were isolated.
See table S4 for details of all node and edge para-
meters and names of the proteins identified as

and wing are the most easily scored, because
Ras activity promotes cell growth, cell pro-
liferation, cell survival, and differentiation
into vein tissue downstream of EGFR activ-
ity. Because most of our newly identified
pathway-associated genes do not have known
alleles, we tested for phenotypes by express-
ing RNAI hairpins in Drosophila, which
can faithfully recapitulate known pheno-
types (31, 32). We tested for phenotypes
of multiple genes isolated in our screens
by expressing hairpins from a library cre-
ated for transgenic RNAI, or in a few cases
by complementary DNA (cDNA) overexpres-
sion, in the developing wing disc (Fig. 5, fig.
S4, Table 1, and table S5). Of the 84 genes
tested, 48 (57%) had a phenotype in the wing.
Consistent with systematic PPI analyses in
yeast (/3), we found that proteins with a high
degree (“hubs”) in MasterNet were no more
likely than proteins with a lower degree to
result in a wing phenotype.

We found that even genes that were iden-
tified both in RNAi screens and in the PPI
interaction network were no more likely than
genes isolated from each individually to
score in wing phenotypes. One of the genes
that were positive in both the functional ge-
nomic screen and the interaction screen was
CG6453, which encodes a noncatalytic sub-
unit of glucosidase II. The interaction be-
tween the CG6453 protein and Raf had a
high SAINT score, and coimmunoprecipita-
tion experiments confirmed this interaction
(fig. S3A). In the S2R+ EGFR RNAI screen,
this gene was a negative regulator, and we
demonstrated that its depletion by RNAI re-

pathway interactors.

Maximum RNAi score

-5 0 5

RTK-Ras-ERK interactome and functional genomic data as browsable data
files and in Cytoscape format, a graph layout and querying tool (28). How-
ever, given the widespread importance of this pathway and to make the
integrated network interactive and widely accessible, we also provide access
to the data with the Interaction Map (IM) Browser, an online network visu-
alization tool for interactive, dynamic visualization of PPIs (29). Because in-
tegration of multiple data sources improves the specificity and reliability of
individual high-throughput data, we merged our data with the Drosophila In-
teractions Database (http:/www.droidb.org), which contains previously
determined PPIs from Y2H and other studies, a wealth of Drosophila genetic
interactions, and predicted conserved interactions, or interologs, from yeast,
worms, and humans (30). With these tools, the RTK-Ras-ERK network
can be searched, filtered, and overlaid with multiple genomic data sets.

Rtf1, TeplV, PPP6 complex, and CG6453 as regulators
of ERK activation in vivo

RTK signaling to ERKSs regulates diverse processes during Drosophila de-
velopment. Among these, phenotypic alterations in the Drosophila eye
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sulted in a growth and patterning defect (ec-

topic wing vein material) in the wing, which

is consistent with negative regulation of

the pathway (Fig. 5A). Although genes en-

coding TepIV, the Drosophila homolog of a
glycophosphatidylinositol (GPI)-linked protein that is mutated in human
cancers, and components of the protein phosphatase PPP6 complex, its
catalytic subunit PpV and regulatory subunit CG10289, were not found
in the RNAI screens, these proteins were positive in the interaction screen.
We confirmed their interactions with pathway components by coimmuno-
precipitation (fig. S3A) and demonstrated that their knockdown produced
in vivo phenotypes (Fig. 5, B and C). TeplV interacted with Ksr and, de-
spite not scoring in our RNAi screens and having a weak RNAi phenotype
in cells, nevertheless modified the Ras™” phenotype, consistent with a
role as a positive regulator (Fig. 5B). PpV and CG10289 interacted with
each other and Raf, and PpV depletion resulted in a growth defect in the
wing (Fig. 5C). Finally, Rtfl, a histone methyltransferase, was a weak in-
teractor with multiple pathway components and was filtered out of the
final PPI network because of its SAINT score. However, the gene encod-
ing this protein was identified as a negative regulator in our RNAI screens,
and we confirmed an in vivo phenotype associated with increased dpERK
(indicating increased activity) in the wing (Fig. 5D), showing that Rtf1 is a
bona fide regulator of ERK activation.
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Fig. 5. In vivo analysis of newly identified regulators of RTK-Ras-ERK
signaling in Drosophila. (A) Knockdown of CG6453 results in a
growth defect in the wing. CG6453-Phl interaction was isolated with
a SAINT score of 0.99, and CG6453 had a Z score of 1.6 under EGF
stimulus in S2R+ cells. (B) Knockdown of TeplV enhances the Ras'”
loss of wing vein phenotype consistent with a role as a positive reg-

ulator. TeplV had a SAINT probability of 1.0. (C) Knockdown of the

ap-Gal4, UAS-GFP,

ap-Gal4, UAS-GFP

dpERK

REf1RNAI

PPP6 subunit PpV results in a growth defect in the wing. PpV had a SAINT score of 0.88 with Phl. (D) Knockdown of Rtf1 results in a growth defect

in the wing and induces ectopic dpERK staining in the wing disc. Rtf had

DISCUSSION

Dissection of oncogenic signaling pathways with functional genomics and
proteomics approaches facilitates understanding dynamic information pro-
cessing and how these pathways may be disrupted by mutations or targeted
therapeutically (26). By combining multiple, parallel genome-wide RNAi
screens and TAP-MS interactome screens, we have assembled an integrated
network of RTK-Ras-ERK signaling with both PPI interactions and func-
tional information obtained in the same signaling environment. This net-
work provides a resource for subsequent hypothesis-driven, mechanistic
investigation of hundreds of conserved regulators.

Because high-throughput data sets are individually susceptible to mul-
tiple sources of technical and biological noise, confidence in subsets of
any given “omics” data set can be increased by overlapping contrasting
experimental approaches. Most integrative efforts up to now have queried
data sets generated under disparate conditions and even different orga-
nisms. We found that only a small fraction of the hits from interactome
or functional screening were isolated under all conditions tested, and most
of these represented known “canonical” pathway components. Many of
the hits that were identified from each method individually also showed
evidence of activity in vivo. Comparing our studies to other studies of
MAPK regulators suggests that the complete landscape of proteins regu-
lating RTK-Ras-ERK signaling under specific conditions is likely to be
larger than the conservative overlapping network that we describe. In com-
parison to a Y2H screen for MAPK pathway interactors, where >600
interactions were identified (/4), only 54 proteins overlapped with our
network, 30 (56%) of which also were positive in our RNAi screen, in-
cluding the proton transporter ATPsyn-f (ATP5B), which was a negative
regulator in our RNAI screens. Of the 31 proteins from a study of dynamic
ERK interactors that overlapped with our filtered data set (27), 22 were
encoded by genes positive in our RNAI screens, but only one, heat shock
protein 60 (HspD1), was pulled down by ERK itself in our study. How-
ever, another 16 proteins interacted with Raf and 8 interacted with Dsor
(MEK). By considering the Raf-MEK-ERK cassette as a whole, the num-

www.SCIENCESIGNALING.org 25 October 2011

a Z score of 2.25 under insulin stimulus in S2R+ cells.

ber of overlapping interactions increased. Although these comparisons are
limited by the differences in Y2H and TAP-MS techniques, the population
of regulators that can be identified is probably highly technique- and
condition-specific, and this work should be seen as a “first pass” at iden-
tifying the universe of proteins regulating the output of this pathway.
We used PPI mapping and functional genomic methods to identify
several previously unknown regulators that also exhibited in vivo roles
in RTK-Ras-ERK signaling. Translation of cell culture regulators to in vivo
phenotypes is challenging due to lack of knowledge of the correct
tissue in which to test for activity. Because many of the newly identified
regulators are likely cell type— and RTK-specific, we were unable to iden-
tify phenotypes in the wing disc for many of these regulators. A large
number of genes positive in the RNAI screens were not identified in the
PPI network, either because of false negatives or because the encoding pro-
teins modulate activity of the pathway indirectly. A prime example of this
latter category is Rtfl, a histone methyltransferase knockdown of which
enhanced ERK activation in vivo. Rtfl enhances Notch pathway activity
(33), and the Notch pathway can inhibit ERK activity (34); thus, Rtfl
may be a key mediator of Notch-ERK crosstalk. In contrast, we identified
another protein phosphatase 2A (PP2A) family member, the PPP6 ortho-
log PpV and its regulatory subunit CG10289, as interacting with Raf, but
did not identify the genes encoding these proteins in our RNAi screens. In
mammals, PPP6 components can interact with the inhibitor of nuclear
factor kB IxkBe (18, 35) and regulate the cell cycle in normal and patho-
logical contexts. The role of the Ser-Thr phosphatase PP2A in the Ras
pathway has been principally described as a positive regulator through
dephosphorylation of Ser”® on Raf and Ser**? on Ksr (numbering is based
on human proteins), inducing 14-3-3 protein dissociation (36); PPP6 may
play a similar role in Raf activation in specific in vivo contexts. CG6453, a
noncatalytic subunit of glucosidase I, was identified in the interaction
screen and was identified in the RNAI screens, indicating a high-confidence
interactor. Although its mechanism of regulating MAPK output remains un-
known, it is consistent with the growing recognition that metabolic and
other genes previously thought to have “housekeeping” roles can have
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Table 1. In vivo analysis of PPI or RNAI screen hits. Shown are hits
with wing phenotypes of any kind. Genes in bold encode proteins
identified in the PPI network, as well as were positive hits in the RNAI
screens. PPIs with SAINT <0.83 were removed as nonspecific.
Values in primary screen categories represent average Z score for

two replicates. N/A, not identified in any TAP experiment; Ras[N17],
dominant-negative Ras; Elp[B1], gain-of-function EGFR allele; tor{4021],
gain-of-function torso allele; MS1096, promoter used to drive expres-
sion of the given transgene in the wing. All genes tested are listed in
table S5.

RNAi or PPI hits with wing phenotypes

Maximum . ! .
- Baseline . Baseline 10'EGF 10'EGF 30' EGF
Symbol Name Wing phenotype  SAINT  “o,p ™ Insulin o0/ MDER S2R+mtDER KcmtDER KcmtDER S¢7een
probability S2R+
uex unextended Slight curling 1.00 032 -047 1.02 -2.70 0.10 0.06 E
CG6453 - Slight curling 0.99 -0.94 0.94 0.51 1.60 0.85 0.28 E
brm brahma Wing size reduced; 0.89 -097 -2.46 -2.09 0.36 0.61 2.42 IEK
slight curling;
wing shape
abnormal
betaCop B-Coatomer Nearly complete 0.88 0.15 2.08 2.85 -3.86 0.27 -1.74 IEK
protein loss of wing tissue
TeplV Thiolester-  Enhancement of 1.00
containing Ras[N17]
protein IV wing vein phenotype
PpV Protein Nearly complete loss 0.88
phosphatase V. of wing tissue
Dref DNA Nearly complete loss 0.78 0.20 -0.38 -0.60 -4.34 -0.76 0.11 E
replication— of wing tissue
related element
factor
kis kismet Ectopic wing 0.56 1.08 -1.97 0.71 0.46 0.32 2.56 IK
vein material
CG6907 — Enhancement of 0.56 0.64 -5.67 -1.37 -3.82 -1.26 0.94 IE
Ras[N17] wing
vein phenotype
ACC Acetyl-CoA  Severely blistered, 0.56 -145 -2.89 -1.81 2.02 0.42 -0.58 IE
carboxylase misshapen, and
reduced wing size
Chro Chromator  Severely blistered, 0.56 -1.20 -1.34 -1.51 -1.26 2.16 0.18 EK
misshapen, and
reduced wing size
CG3523 — Slight curling 0.56 -0.28 2.10 1.07 -3.69 0.20 -0.96 IE
cact cactus Wing size reduced; 0.56 -1.5 -2.45 -0.73 -1.85 0.22 0.29 IE
ectopic and missing
vein material; Null
allele suppresses
Elp[B1] phenotype
in eye; Null
allele suppresses
tor{4021] phenotype
in embryo
Rif1 Rtf1 Severely blistered, 0.56 -0.95 2.25 1.22 0.45 0.2 1.37
misshapen, and
reduced
wing size; enhanced
dpERK staining
sl small wing  Ectopic wing 0.53 1.61 1.19 -0.43 0.72 0.76 -1.03 |
veins with MS1096
agt2 dim y-tubulin 2 Enhancement of 0.53 4.39 0.15 1.27 0.46 -0.52 -0.54 |
Ras[N17] wing
vein phenotype
Caft Chromatin Blistered, misshapen, 0 -229 -2.72 -0.34 -0.63 0.09 0.1
assembly factor  curled, and reduced
1 subunit wing size
CG8963 — Ectopic wing 0 -0.18 -3.01 -0.67 -3.52 0.02 1.61 IEK
vein material
beta' Cop p'-Coatomer Nearly complete loss 0 -0.54 2.2 5.49 -3.14 -0.29 -0.72 IE
protein of wing tissue

continued to next page
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RNAi or PPI hits with wing phenotypes

Symbol Name

Wing phenotype

Maximum
SAINT
probability

Baseline

S2R+

Insulin
S2R+

Baseline

10' EGF

10' EGF 30' EGF
S2R+mtDER S2R+mtDER KcmtDER KcmtDER

Screen

hyx hyrax

deltaCOP
protein

alphaTub85E
at 85E

Arc42
chinmo

Arc42

CG34422 —

CG5844 —

CG6854 —

Axn Axin

CG13298 —

Spc105R

Spn42Dc

Cdc27 Cdc27

wah waharan

Cap-G —

CG6984 —

CG43073 —

continued to next page

delta-coatomer

o-Tubulin

Chronologically
inappropriate
morphogenesis

Spc105-related

Serpin 42Dc

Nearly complete loss
of wing tissue
Severely blistered,
misshapen, and
reduced wing size
Severely blistered,
misshapen, and
reduced wing size
Slight curling
Wing size reduced;
blistering;
upward curling;
cDNA overexpression
lethal with all
drivers tested
Wing size reduced;
slight curling; pWiz
second hairpin also
results in smaller,
rough wings
Wing size reduced;
loss of wing
vein material
Possible ectopic
wing vein material;
enhancement
of Ras[N17] wing
vein phenotype
Possible ectopic wing
vein material
Blistered, curled,
and reduced
wing size;
ectopic wing
vein material
Blistered, misshapen,
curled, and reduced
wing size
Ectopic wing vein
material; suppression
of Ras[N17] wing
vein phenotype
Misshapen and reduced
wing size
Much smaller wing with
loss of wing vein
material; hairpin wing
phenotype enhanced
by DER[DN]
(dominant negative);
hairpin expression
in eye results
in rough, smaller eyes
Nearly complete loss
of wing tissue
Enhancement of
Ras[N17]
wing vein phenotype
Overexpression in wing
results in expanded
A-P axis and ectopic
wing veins

0

0

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

3.94

0.18

2.74

1.82
-0.44

-2.05

-3.41

2.54

2.75

6.73

4.67

3.11

-0.88

3.25

6.42

-3.79
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2.94

1.69

-2.83

-0.13
-3.46

0.65

—4.65

-0.81

1.42

-1.71

1.26

-4.07

1.42

0.57

-0.83

-2.58

2.48

1.3

1.88

1.44
-2.01

-1.99

-1.71

-1.48

-0.29

1.06

-0.33

1.7

6.12

-0.61

1.72

-0.34

-1.65

0.62

-2.91

-2

0.17
-1.77

0.19

-6.92

-2.84

0.41

0.38

0.48

-6.57

-7.11

0.64

0.69

-6.08

2.16

-0.31

-0.21

-0.59
0.49

0.77

-1.92

0.74

2.56

-1.19

0.83

-0.43

-1.6

-1.86

-0.18

-0.27

-1.39

1.02

-1.57

0.14

-0.42
-0.03

1.44

-0.54

1.7

1.81

-0.71

0.21

0.02

-2.16

-0.12

1.07

2.23

IEK

IEK

IE

IEK

IEK

IEK

EK

IEK
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RNAi or PPI hits with wing phenotypes

Symbol

Maximum . 10 .
. Baseline . Baseline 10 EGF 10'EGF 30' EGF
Name Wing phenotype ~ SAINT o0 ™ Insulin o0 {DER S2R+mtDER KcmtDER KcmtDER
probability S2R+

Screen

dco

Not1

ago

fzy

Vha100-5

CG6608
CoRest

Vps4

aret

CG17665

uri

CG3332

discs Overexpression in wing N/A 1.99 1.03 0.86 0.58 -0.19 0.22 |
overgrown results in expanded
A-P axis and
thickened wing veins
and suppresses
RasN17 (dominant
negative) wing
vein phenotype;
overexpression in
the eye produces
a rough eye
phenotype
Not1 Severely blistered, N/A 1.61 -1.97 -3.28 -4.41 2.66 2.31 IEK
misshapen, and
reduced wing size;
pWiz second hairpin
expression in wing
also results in loss
of most tissue;
overexpression in
wing results in
ectopic wing veins;
hairpin expression
in eye results in
rough, smaller eye
archipelago  Slight curling; N/A 0.71 4.15 1.47 1.47 0.13 -0.53
enhancement of
Ras[N17] wing
vein phenotype
fizzy Slight curling; N/A -0.76  -3.97 -1.47 -4.98 -0.51 1.24 IE
suppression
of Ras[N17]
wing vein
phenotype
Vacuolar H[+] Slight curling N/A 164 -1.12 -1.29 -2.07 1.58 0.08 IEK
ATPase subunit
100-5
— Slight curling N/A -0.25 -2.59 -0.35 -1.22 0.55 0.25 |
CoRest Slight curling; ectopic N/A 282 -3.13 1.30 -1.98 1.52 0.88 IEK
wing vein material;
suppression of
Ras[N17] wing
vein phenotype
Vacuolar protein Upward curling; N/A -0.64 -2.87 0.12 -5.01 -2.68 -3.6 IEK
sorting 4 suppression of
Ras[N17] wing
vein phenotype
arrest Upward curling; N/A -2.8 -6.28 -2.76 -5.98 0.48 5.45 IEK
possible wing
vein defect
— Wing size reduced; N/A 1.99 0.65 0.77 -0.57 0.78 1
upward curling;
pWiz and TRiP
hairpin enhance
Ras[N17] wing
vein phenotype
unconventional Wing size reduced; N/A -0.11  -3.65 -0.27 -2.21 -1.13 -1.02 IE
prefoldin RPB5  upward curling;
interactor suppression
of Ras[N17]
phenotype
— Wing size reduced,; N/A -0.02 -2.21 -0.53 -0.02 1.09 0.78
upward curling
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specific functions in signaling (37, 38). Finally, despite its interaction
with intracellular Ksr, TepIV has homology with CD109, a GPI-linked
cell surface marker of T cells, endothelial cells, and activated platelets, that
contains a protease inhibitor 02 macroglobulin domain (39); CD109 is
mutated in 7% of colorectal cancers (40) and may thus affect ERK output
in these cancers. As more human cancers are characterized through
ongoing large-scale next-generation sequencing, our data set of regula-
tors of RTK-Ras-ERK signaling will provide a resource for understand-
ing the potential mechanistic contribution of somatic mutations to cancer
development.

MATERIALS AND METHODS

RNAi screening

Primary screening procedures were performed as published previously
(4, 41). We derived an S2R+ cell line expressing DER (EGFR) from a
metallothionein promoter (S2R+mtDER) also expressing cyan fluores-
cent protein (CFP)-tagged Dsorl (MEK) and yellow fluorescent protein
(YFP)-tagged R1 (ERK) (4). We confirmed ERK activation after secreted
Spitz (sSpitz) (EGF in mammals) stimulus of both endogenous and tagged
ERK by Western blotting and high-throughput format, and confirmed
assay sensitivity, using dsRNAs targeting canonical components of the
RTK-Ras-ERK pathway. For primary screening in Kc167 cells, we used
our previously described cell line Kc167 expressing DER (EGFR) from a
metallothionein promoter (Kc mtDER) (4) and modified the high-throughput
assay with our Alexa 647—conjugated dpERK antibody normalized to DAPI
(4’ ,6-diamidino-2-phenylindole) staining of nuclei to quantify ERK activ-
ity. Cells were stimulated with conditioned media containing sSpitz for 10
or 30 min. We performed secondary screens as described (4/), using S2R+
and Kc cell lines with insulin (25 pg/ml) or sSpitz-containing conditioned
media. Briefly, cell lines were seeded in plates prepopulated with resynthe-
sized dsRNA amplicons identified from the primary screen as InR- or
EGFR-specific. After stimulation, cells were fixed and stained for dpERK
as previously described. Primary screen hits were prefiltered for compu-
tationally predicted off-target effects, which is generally sufficient to re-
duce off-target noise to below assay noise (4); however, any individual
dsRNA should be treated with caution until validated with multiple am-
plicons (42). A Z score threshold of £1.5 was used as the primary screen
cutoff and is an average of replicate screens under each condition. Full
data sets and dsRNA sequence information are available at the Drosophila
RNAI Screening Center (DRSC) Web site (http:/www.flyrnai.org).

TAP and MS

TAP expression vectors permitting low-level expression of tagged compo-
nents in stable Drosophila cell lines using the metallothionein promoter
have been previously described (20). For the bait proteins, we cloned InR,
PVR, EGFR, Drk (Grb2), Dos (Gab), Sos, Src42A, Gapl, Csw (Shp2),
Ras85D, Phl (Raf), Dsorl (MEK), Ksr, Cnk, and Rl (ERK) into the
C-terminal tag TAP vector and created stable cell lines for each, as well
as a control cell line for subtracting nonspecific interactors or contaminants.
All cell lines except InR-TAP also expressed EGFR from an uninduced
metallothionein promoter (resulting in minimal low-level expression) for in-
duction with sSpitz (EGF). Cells (1 x 10° to 2 x 10%) induced with 140 uM
CuSOy, overnight were used for each lysis at the given condition. Cells were
lysed as described (20) and in-solution TAP was performed essentially as
described (43), with the exception of final washes and elution, which was
performed in ammonium bicarbonate buffer without detergent for LC-
MS/MS analysis. At least two biological replicates were performed for
each bait and condition.

www.SCIENCESIGNALING.org 25 October 2011

Several micrograms of TAP immunoprecipitation from each bait con-
dition were reduced with 10 mM dithiothreitol at 55°C, alkylated with
55 mM iodoacetamide at room temperature, and then digested overnight
with 2.5 pg of modified trypsin (Promega) at pH 8.3 (50 mM ammoni-
um bicarbonate) in a total of 200 pul. The digest was stopped with 5%
trifluoroacetic acid (TFA) and cleaned of buffer and debris with a Cig ZipTip
(Millipore). Thirty-five microliters of aqueous high-performance liquid
chromatography (HPLC) A buffer was added to the C,g ZipTip elution
(50% acetonitrile/0.1% TFA) and was dried to 10 pul to concentrate the
sample and remove organic content.

A 5-pl aliquot was injected onto the microcapillary LC-MS/MS sys-
tem for sequencing. The microcapillary LC-MS/MS setup consisted of a
75-um inside diameter (ID) x 10-cm length microcapillary column (New
Objective Inc.) self-packed with Magic C18 (Michrom Bioresources) and
operated at a flow rate of 300 nl/min by means of a splitless EASY-nLC sys-
tem (Thermo Fisher Scientific). The HPLC gradient was 3 to 38% B over
60 min followed by a 7-min wash at 95% B. The column was preequilibrated
with A buffer for 15 min at 0% B before the runs (A: 99% water/0.9%
acetonitrile/0.1% acetic acid; B: 99% acetonitrile/0.9% water/0.1% acetic
acid). The microcapillary LC system is coupled directly to an LTQ Orbitrap
XL mass spectrometer (Thermo Fisher Scientific) operated in positive ion
mode for data-dependent acquisitions (DDAs) [Top 5: one Fourier transform
(FT) survey scan followed by five scans of peptide fragmentation (MS/MS)
in the ion trap by collision-induced dissociation (CID) using helium gas]. The
spray tip voltage was 2.8 kV and capillary voltage was 35 V. A single micro-
scan with a maximum inject time of 400 ms was used for the FT-MS scan in
the Orbitrap, and 110 ms was used for the MS/MS scans in the ion trap. Typ-
ically, between 3000 and 6000 MS/MS spectra were collected per run. The
total number of LC-MS/MS runs collected for this study was 94 and collected
over a 6-month period. All LC-MS/MS runs were separated by at least one
blank run to prevent column carryover. Raw MS/MS spectra are available by
request and are deposited in Proteome Commons as data set 76892.

All collected MS/MS fragmentation spectra were searched against the
reversed dmel-all-translation protein database (FlyBase Consortium) ver-
sion 5.4 (41,644 protein entries, January 2008) using the Sequest search
engine in Proteomics Browser Software (Thermo Scientific). Differential post-
translational modifications including deamidation of QN (glutamine and
asparagine) (+0.989 dalton) and oxidation of methionine (+15.9949 daltons),
common in vitro modifications that occur during sample processing, were
included in the database searches. From Sequest, protein groups con-
taining at least two unique identified peptides were initially accepted if they
were top-ranked matches against the forward (target) dmel-all-translation
protein database and with a consensus score of greater or equal to 1.0. In-
dividual peptides that were not part of protein groups were accepted if
they matched the target database and passed the following stringent
Sequest scoring thresholds: 1+ ions, Xcorr 21.9, S£20.75, P 2 1; 2+ ions,
Xcorr 22.0, Sf 20.75, P 2 1; 3+ ions, Xcorr 22.55, Sf 20.75, P 2 1.
After passing the initial scoring thresholds, all peptide hits not contained
in protein groups were then manually inspected to be sure that all b (frag-
ment ions resulting from amide bond breaks from the peptide’s N terminus)
and y ions (fragment ions resulting from amide bond breaks from the
peptide’s C terminus) aligned with the assigned sequence using tools
(Fuzzylons and GraphMod) in Proteomics Browser Software (Thermo
Fisher Scientific). An FDR rate of 1.84% for peptide hits and 0.6% for
protein hits was calculated on the basis of the number of reversed database
hits above the scoring thresholds.

Computational analysis of TAP-MS data

We used the “significance analysis of interactome” (SAINT) algorithm
to calculate probability scores for interactions observed by MS. SAINT
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uses spectral count data and constructs separate distributions for true and
false interactions to derive the probability of a bona fide PPI. Because
SAINT models spectral counts with a unimodal distribution, we ran the
algorithm separately for each condition and combined the scores. Specif-
ically, we assumed that each condition was conditionally independent giv-
en the spectral count data and computed the probability that the interaction
was true in any condition. For proteins A and B in conditions 1 to 7, the
combined score is computed as:

P(A < B any cond) = 1— P(A < B no cond)
= 1-(1-P(A=Bcond 1)) ...
(I = P(A < B condn))

where P(A < B cond i) is the SAINT score for condition i. Some proteins
were not used as baits in all conditions; hence, some interactions that were
observed in one condition could not be observed in another. In this case,
we used the previous probability of an interaction occurring in that con-
dition as computed by the SAINT algorithm. In the general setting, this
would be the probability that a randomly chosen pair of proteins interact,
that is, (number of interacting pairs of proteins)/(number of pairs of pro-
teins). In our specific case, we are choosing a pair of proteins from pro-
teins that are observable in MS, so we adjust the ratio accordingly to our
specific setting.

Additionally, we computed pairwise dynamic difference scores be-
tween conditions (the probability that an interaction is true in one con-
dition but not the other), assuming the conditions were conditionally
independent given the spectral count data.

To determine a high-confidence threshold, we constructed a set of true-
positive interactions by overlapping our experimental interactions with
BioGRID. This list contained 49 interactions between 114 proteins. We
formed a true-negative set by taking interactions that were more than three
hops away in the BioGRID protein interaction network. A receiver operat-
ing characteristic (ROC) curve generated with this gold standard list and
generated with fly binary and fly complex data is shown in fig. S2, A and B.
‘We chose 0.83 as the cutoff to achieve a 7.2% false-positive rate and 26.5%
true-positive rate, which is comparable to the results achieved in (15).

Additional statistical analysis

Filtered binary interactions were graphed using the Cytoscape environ-
ment (28). For analysis of feedback regulation, three in vivo microarray
studies were collated (23—-25). Microarray data from in vivo analysis of meso-
derm (24) were reanalyzed to focus on subgroups for the RTK-Ras-ERK
pathway only, excluding other pathway data sets.

Human orthologs were predicted with DIOPT, an integrative ortholog
prediction tool developed at DRSC (44) (http://www.flyrnai.org/cgi-bin/
DRSC_orthologs.pl). The orthologs with the best prediction score, re-
flecting the number of methods from which the prediction was identified,
were selected. Potential human disease-related fly homolog information
was obtained from Homophila version 2.1 (45). Gene expression levels were
obtained from DRSC (http://www.flyrnai.org/cgi-bin/RNAi_expression_
levels.pl), and cell line gene expression data were obtained from the
modENCODE project (46). The significance of conserved genes, ex-
pressed genes, or disease-related genes was tested by calculating cumu-
lative hypergeometric probability. The enrichment of GO annotations for
Molecular Function and Biological Process, as well as Panther pathway anno-
tation, was performed with the online DAVID tool (http://david.abcc.nciferf.
gov/) (47). Hierarchical clustering and graphing was performed with the
MultiExperiment Viewer, Cluster, and Java TreeView programs (48—50).
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MasterNet is a compilation of databases. (i) Fly binary PPI network:
This network was constructed by integrating experimentally identified
binary PPIs (direct physical interactions) from major PPI databases, such
as BioGRID (57), IntAct (52), MINT (53), DIP (54), and DroID (30). The
fly binary PPI network consists of 29,325 interactions between 8161 pro-
teins. The PPIs were downloaded from the source databases in PSI-MI for-
mat (55), and the gene/protein identifiers were mapped to FlyBase (56) gene
identifiers. (ii) Interolog binary PPI network: PPIs were predicted on the
basis of experimentally identified binary PPIs for human, mouse, worm,
and yeast. (iii) Interolog protein complexes network: PPIs were predicted
from experimentally identified protein complexes for human, mouse, worm,
and yeast. Both the interolog networks were compiled from BioGrid, IntAct,
MINT, DIP, and HPRD (57) databases. The PSI-MI files were downloaded
from the source databases and the experimental identifier from interaction
detection type field was used to sort the PPI as either binary or complex.
Using ortholog annotation from DIOPT database, we mapped 129,090 PPIs
between 5954 proteins to fly. (iv) Kinase-substrate network: For each exper-
imentally verified phosphorylation site, the kinase that phosphorylates that
site was predicted with the NetPhorest program (58, 59). The program uses
probabilistic sequence models of linear motifs to predict kinase-substrate
relationships. The fly kinase-substrate network consists of 26,736 interac-
tions between 55 kinases and 2518 substrate proteins. (v) Domain-domain
interaction (DDI) network: Known and predicted protein DDIs were
extracted from DOMINE database (60), which includes 26,219 interactions
inferred from Protein Data Bank (PDB, http://www.pdb.org) entries and
those that are predicted by 13 different computational approaches using
Pfam domain definitions. For network integration, we considered only
high-confidence DDIs as defined by DOMINE and those derived from
crystal structures.

Western blotting and coimmunoprecipitation

All Western blotting and coimmunoprecipitation procedures and antibodies
used were previously described (4). Quantification of dpERK and total
ERK (used as normalization value) was performed with the LI-COR detec-
tion system. Western blotting and coimmunoprecipitation experiments were
performed a minimum of two times.

In vivo analysis

Stocks used for genetic analysis were obtained from Bloomington except
where noted. All hemagglutinin-tagged cDNA constructs were cloned by
polymerase chain reaction (PCR) cloning with Phusion Polymerase (New
England Biolabs) into pUAST. cDNA clones or libraries used as templates
were as follows: Dco (LD04938), CG31666 (SD04616), Rackl (RE74715),
CG1884 (cDNA library), and CG31302 (AT04807). Hairpins described
in the text were cloned into pWiz as described previously (67) using the
following primers: CG7282: CACGCCCAGCTGTCAG, TTCACGT-
TCTCCAGTTTCTC; CG3878: CAGCTCCGCAGTGCTCGTGT,
AGTTGTCGTCGTCGGAGCTC; CG1884: TCGGCTTGGGCACAAAC,
AAGGACTTCGCCCTGGAT; and CG17665: GCAGAAGCAATAGC-
CGAATC, ATTTTCTCATCTGCCGCATC. Other RNAI hairpins were
designed with the attP targeted transgenic system for an in vivo RNAi
project (“TRiP” lines) as described (37), as well as RNAI lines from Vienna
Drosophila RNAi Center and NIG-Fly Japan stock center. Other fly lines
are ywhsFlp, MS1096-Gal4, UAS Rasi™", ElpP'/CyO, apterous-Gal4,
and UAS-mCDS-GFP/CyO. For dpERK staining, wing discs from third
instar larvae were dissected in cold phosphate-buffered saline (PBS), fixed
for 15 min in 4% formaldehyde, and washed in PBS + 0.1% Triton. Discs
were stained with a rabbit antibody that recognizes dpERK (Cell Signaling).
Wings of the indicated genotype were mounted in a 1:1 mixture of Per-
mount and xylenes.
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A complete list of the hairpin lines used in this study is given in

table S6.

SUPPLEMENTARY MATERIALS

www.sciencesignaling.org/cgi/content/full/4/196/rs10/DC1

Fig. S1. Primary RNAI screen optimization and data.

Fig. S2. Performance of SAINT-based PPI ranking.

Fig. S3. Validation of additional PPI interactions.

Fig. S4. Phenotypes of additional RTK-Ras-ERK network components based on in vivo
RNA.i.

Table S1. Compilation of all hits from six genome-wide RNAi screens performed in
duplicate, and grouping by screen type.

Table S2. Gene Ontology Biological Process and Molecular Function categories enriched
in RNAi screen hits and PPI data.

Table S3. RTK-specific hit subsets.

Table S4. Protein-protein interactions determined by TAP-MS analysis of RTK-Ras-ERK
canonical pathway.

Table S5. Compilation of all in vivo results.

Table S6. Hairpin lines used for in vivo analyses.

Cytoscape file for the PPl and RNAi data.

Excel spreadsheets of peptides isolated in each TAP-MS experiment.
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