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Reactive Oxygen Species (ROS) are a natural by-product of cellular growth and proliferation, and

are required for fundamental processes such as protein-folding and signal transduction. However,

ROS accumulation, and the onset of oxidative stress, can negatively impact cellular and genomic

integrity. Signalling networks have evolved to respond to oxidative stress by engaging diverse

enzymatic and non-enzymatic antioxidant mechanisms to restore redox homeostasis. The

architecture of oxidative stress response networks during periods of normal growth, and how

increased ROS levels dynamically reconfigure these networks are largely unknown. In order to

gain insight into the structure of signalling networks that promote redox homeostasis we first

performed genome-scale RNAi screens to identify novel suppressors of superoxide accumulation.

We then infer relationships between redox regulators by hierarchical clustering of phenotypic

signatures describing how gene inhibition affects superoxide levels, cellular viability, and

morphology across different genetic backgrounds. Genes that cluster together are likely to act in

the same signalling pathway/complex and thus make ‘‘functional interactions’’. Moreover we also

calculate differential phenotypic signatures describing the difference in cellular phenotypes

following RNAi between untreated cells and cells submitted to oxidative stress. Using both

phenotypic signatures and differential signatures we construct a network model of functional

interactions that occur between components of the redox homeostasis network, and how such

interactions become rewired in the presence of oxidative stress. This network model predicts a

functional interaction between the transcription factor Jun and the IRE1 kinase, which we

validate in an orthogonal assay. We thus demonstrate the ability of systems-biology approaches

to identify novel signalling events.

Introduction

Reactive Oxygen Species (ROS) such as oxygen anions, super-

oxide, hydroxyl radicals, and hydrogen peroxide are generated

during normal growth and proliferation, as well as during an

inflammatory response.1–5 But the accumulation of ROS, either

due to normal physiological processes or due to environmental

factors, can lead to oxidative stress and detrimental effects on

cellular constituents such as proteins, lipids, andDNA.6 Organisms

have thus evolved a number of diverse antioxidant mechanisms to

reap the energetic and thermodynamic benefits of ROS-generating

reactions such as oxidative phosphorylation and oxygen reduction

during protein folding, while limiting ROS-induced damage.

Glutathione, catalases, peroxidases, and superoxide dismutases

(SODs) act directly to detoxify ROS;5 while proteins such as

TIGAR (TP53-induced glycolysis and apoptosis regulator)7

and ErbB28 alter glycolytic flux to increase production of the

antioxidant NADPH and thus indirectly affect ROS accumulation.

Autophagy is also a key regulator of redox homeostasis by

degrading ROS-producing mitochondria.5

Signalling networks that promote redox homeostasis are engaged

by oxidative stress and in turn regulate transcription, translation,

metabolism, and organelle morphogenesis. In many cell types,

signalling network activity converges on the regulation of

transcription factors (TFs) such as Nf-kB,9–13 FOXO,14–16 p53,17

and Nrf-2.18 However recent studies suggest that ROS levels are

likely restrained by many different TFs and transcriptional

programs,19–23 which is perhaps not surprising given the fact

that the levels of ROS can be affected through alterations in

diverse cellular processes. But the architecture of signalling

networks that regulate redox homeostasis is poorly understood.
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Towards describing the signalling networks that respond to

oxidative stress, we have developed an image-based readout of

superoxide levels in single cells that can be used in the context

of high-throughput RNAi screens. While screens for genes

that regulate superoxide can provide lists of genes that

contribute to redox homeostasis directly or indirectly, they

do not by themselves provide insight into the architecture of

networks that regulate ROS. One powerful means of inferring

‘‘functional interactions’’ – meaning interactions that occur

between genes/proteins in signaling networks that control

different cellular processes – is through the use of approaches

that cluster genes based on multi-dimensional readouts of

phenotype following gene inhibition.24–28 Multi-dimensional

readouts, or signatures, may be composed of different quanti-

tative or qualitative measurements of cellular phenotypes

following inhibition of a single gene.24 For example we have

previously used high-dimensional readouts of single cell

morphology following RNAi to cluster genes into ‘‘local

networks’’.26 Alternatively multi-dimensional phenotypic

signatures can be comprised of the same readout (e.g. viability)

measured when the gene is inhibited across different genetic

backgrounds;29 as best typified by clustering of genetic inter-

action profiles following systematic double gene knockout in

S. cerevisiae.27 Here we gained insight into the architecture of

networks which regulate redox homeostasis by clustering

multi-dimensional phenotypic signatures that describe how

inhibition of a single gene affects viability, cellular morphology,

as well as superoxide levels in both unsensitised and sensitised

genetic backgrounds. But as the cellular phenotypes and functional

interactions following gene inhibition under normal conditions

may not necessarily reflect those that occur in response to increased

levels of ROS, we repeated ourRNAi screens in cells with increased

oxidative stress. By clustering ‘‘differential phenotypic signatures’’

which represent the difference in phenotypic signatures

following gene inhibition in untreated and treated cells we

can describe how signalling networks are rewired to promote

redox homeostasis.

Results

To quantify cellular superoxide in the context of high-

throughput image based screens we developed a novel method

that uses dihydroethidium (DHE) to label cells. DHE is a blue-

fluorescent cell permeable dye until it is oxidised by superoxide

(O2
�) to bright fluorescent red ethidium that intercalates

within the cell’s nuclear DNA (Fig. 1A).30 Single cell super-

oxide levels can be quantified following image-acquisition of

DHE-stained cells using image-processing algorithms. Briefly,

the mean intensity of the oxidised-DHE/ethidium within the cell

nucleus is normalised to the mean DAPI intensity within the

same region. We validated our image-based assay by quantifying

superoxide following chemical and genetic manipulations that

Fig. 1 An image-based assay for ROS levels. (A) Drosophila S2R+ or mouse embryonic fibroblasts (MEFs) cells stained with dihydroethidium

(DHE) and DAPI. Scale bars are equal to 20 mm and 50 mm for images of S2R+ and MEFs respectively. (B) Nuclear DHE/DAPI ratio in MEFs

quantified by image analysis of increasing doses of rotenone. Each column represents the mean of a population of single cells and is labeled with the

number of cells that were analysed. (C) DHE/DAPI ratio (normalised to plate mean) of 384 untreated wells, or following addition of 1 mM

paraquat for 18 h. (D) DHE/DAPI ratio (n = 4 wells, normalised to mock-treated cells) of mock-treated cells and cells incubated with RNAi

targeting Cova and IRE1. (E) Flowchart describing initial screen for superoxide regulators and subsequent screen strategy. (F) DHE/DAPI ratio

following gene inhibition (mean of experimental and technical replicates) for 120 genes and a mock-treated control in S2R+ cells. Red columns

indicated values normalised to mock-treated cells, blue columns indicate values normalised to plate mean. Error bars represent standard error of

the mean; ** p o 0.01 as compared to control sample determined by Student’s t-test.
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have been previously reported to alter the cellular redox state.

Significant increases in superoxide levels are detected by

microscopy in mouse embryonic fibroblasts (MEFs) following

increasing doses of the mitochondrial poison rotenone

(Fig. 1B) or inDrosophila S2R+ cells following 18 h incubation

with 1 mM of the ROS-generating toxin paraquat (Fig. 1C).

RNAi-mediated inhibition of Cytochrome c oxidase subunit Va

(Cova) in Drosophila S2R+ cells leads to decreases in super-

oxide levels as previously reported30 (Fig. 1D). These results

validate our method as a means to quantify superoxide levels

on a single-cell level.

Using this assay we performed a number of genome-scale

RNAi screens of libraries targeting Drosophila kinases, phos-

phatases (the ‘‘KP set’’) and TFs (‘‘the TF set’’) (Methods).

We performed these screens in unsensitised genetic back-

grounds and in cells where either the Drosophila Nf-kB gene

dorsal/dl, or the Drosophila IkB gene cactus 31 was inhibited by

RNAi (Fig. 1E). We screened Nf-kB and IkB deficient cells

due to the highly conserved role of Nf-kB in the oxidative

stress response.13 IkB inhibits Nf-kB activity through

cytoplasmic sequestration,32 and degradation of IkB results

in nuclear translocation and activation of Nf-kB.33 Genes

whose inhibition increases/decreases superoxide levels in

Nf-kB or IkB deficient cells are presumably likely to play

direct or indirect roles in Nf-kB-mediated regulation of super-

oxide. We consider genes as genuine regulators of superoxide

levels if the weighted Z-scores (calculated based on the number

of cells scored in replicate experiments) of two or more

independent dsRNAs targeting the genes were above or below

a threshold of 1.5 or �1.5 respectively (Fig. 1E). We also

considered TFs to be regulators of superoxide if inhibition of

at least 1 of 2 dsRNAs targeting a TF results in Z-scores above

or below a threshold of 2.0 or �2.0 respectively. Because IkB
opposes the effects of Nf-kB, it is highly unlikely that genes

that enhance or suppress the effects of Nf-kB inhibition (e.g.

increase ROS) would have identical effects in IkB-deficient
cells. Thus we considered dsRNAs that induce similar pheno-

types in both Nf-kB- and IkB-deficient cells to be false

positives. Based on this intuition our false positive rate in

these initial screens was estimated to be B10%. Following the

elimination of false-positives from our data, we identified 52

suppressors and 52 enhancers of superoxide levels in Nf-kB-
deficient cells, and 65 suppressors and 21 enhancers of superoxide

levels in IkB-deficient cells (Fig. 1E and Methods).

While these initial screens provide novel insight into the

regulation of superoxide levels, we generated a new library of

resynthesised dsRNAs targeting 120 genes based on these data

for further validation and screening (Table S1, ESIz). Because
constitutive activation of Nf-kB, such as that which occurs

following inhibition of IkB, is a hallmark of many diseases

driven by inflammation,1 this new library includes dsRNAs

inhibiting 86 genes isolated in IkB-deficient screens. We also

selected dsRNAs targeting Dp, Dr, EcR, E(spl), eve, ftz, gcm,

and gsb-n, Mef2, and oc as these 10 genes were isolated by

screening ofNf-kB-deficient cells, and are regulated by Dorsal/

Nf-kB signaling.34–36 Given the key role of autophagy in redox

homeostasis we also included in the new library additional dsRNAs

targeting 11 genes encoding components of the autophagy

complex. Moreover we included dsRNAs inhibiting CG16708

and Ptpmeg which were isolated as ROS suppressors in Nf-kB
deficient cells and are transcriptionally upregulated during

autophagy.37 Finally we included in the library dsRNA targeting

11 control genes such as Nf-kB, IkB, the Nf-kB kinases ik-2, and

Kenny, Tor, Rac1, and Pbl/Ect-2. Together our new library

consists of dsRNAs targeting 120 genes.

As expected, inhibition of the vast majority of the 120 genes

targeted in our new RNAi library increases superoxide levels,

even in the absence of sensitizing cells with the addition of

either Nf-kB or IkB RNAi (Fig. 1F, red columns). For

example, inhibition of IRE1 and ATF6 increases superoxide

levels (Fig. 1D and E). Both IRE1 and ATF6 are components

of the Unfolded Protein Response (UPR) that is engaged by

endoplasmic reticulum stress and concomitant with an elevation

in ROS levels.38,39 Thus inhibition of these proteins may result

in unresolved ER stress and accumulation of superoxide. But

undoubtedly these genes we have identified in this screen

suppress ROS levels through a variety of means.

We next sought to determine how these 120 genes functionally

interact in cellular systems. As single values following RNAi

knockdown are not appropriate to gain insight into functional

interactions, we used different means to increase the dimensionality

of our phenotypic signatures through subsequent rescreening

in S2R+ cells. Specifically we quantified: (1) cell size and cell

roundness following RNAi; (2) the effect of gene inhibition on

viability; (3) superoxide levels, morphology, and viability

following RNAi mediated inhibition of either Nf-kB or IkB.
Two independent dsRNAs were used to target each gene, each

designed to have no or few (o10) off-target effects (OTEs),

and each dsRNA was screened 4 or 8 different times in

the same experiment. The mean score of all technical and

experimental repeats was then used to generate the final

phenotypic signature. Notably, for assays described in this

work, we calculated a Z-score using the mean score of all wells

screened for a specific assay (e.g. a particular measurement in a

certain genetic background), thus genes will have both positive

and negative Z-scores for DHE/DAPI ratios (Fig. 1F, blue

columns) even though many are suppressors of superoxide

levels when compared to mock-treated S2R+ cells (Fig. 1F,

red columns).

We assigned groups of genes into different ‘‘phenoclusters’’

of functional interactions using hierarchical clustering and

cluster validation. Groups of genes are considered to be a

phenocluster if the confidence in the existence of the cluster is

p r 0.05, where the p-value is calculated by multi-scale boot-

strap resampling (Methods). In the screen of cells grown under

normal conditions, we identified 13 validated phenoclusters

(Fig. 2 and Fig. S1 (ESIz)). Although many of the genes in this

dataset are very poorly characterized, we identified some cases

where clustering recapitulated previously known biochemical

interactions. For example 6/8 and 3/3 genes in two different

clusters are ATG genes. This clustering is driven by the fact

that while inhibition of these genes affects morphology in

dorsal/Nf-kB-deficient cells, the effects are otherwise relatively
mild (Fig. 2). Thus we conclude that in Drosophila cells

growing under normal conditions, inhibition of autophagy

does not greatly impact cellular phenotypes. Presumably, this

is in part due to the fact that autophagy is dispensable for

growth and viability when cells are grown in rich media, and
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proteins such as Tor are actively repressing the induction of

autophagy.40,41 We also note that Srp and its target ush are

part of the same cluster.42 Notably there are several potential

interactions between genes in this dataset that are not observed.

For example, Mef2 is known to regulate the transcription of

many genes in this dataset including ase, HLHm3, lbl, lola, Dp,

hth, E(spl), eve, hth, ush, TFIIalpha, and fray36 during embryonic

development, but only Dp and E(spl) cluster with each other

(Fig. 2). The fact that we do not observe previously established

functional interactions likely reflects the highly dynamic nature

of these interactions. For example Mef2 may upregulate many of

its known downstream targets only during embryogenesis, but

not in proliferating S2R+ cells.

To determine how rewiring of cellular networks occurs in

response to oxidative stress, we repeated all screens following

incubation of cells with 1 mM paraquat. Scores of each

phenotypic assay performed on untreated cells were then

subtracted from comparable scores generated from screening

of cells in oxidative stress to generate differential phenotypic

signatures.43,44 The largest change in cellular superoxide levels

between untreated and paraquat-treated cells was observed

following inhibition of the phosphatase-encoding gene alphabet

(Fig. 3) which is remarkably consistent with the role of this gene

in participating in the stress response in vivo.45 Inhibition of

Atg7, Atg8a, Atg8b, Atg9 leads to increases in superoxide levels

in paraquat-treated but not untreated cells supporting the

notion that autophagy is a critical suppressor of ROS in periods

of oxidative stress.46 Targeting of Nf-kB signalling components

ird-5, and pelle/IRAK by RNAi also increases superoxide

levels in the presence of paraquat compared to control cells,

consistent with the well-established role of Nf-kB signalling in

the response to oxidative stress.13 Interestingly, inhibition of

tin and its transcriptional targets E(spl) and Dr36 mimicked

the effects of autophagy suggesting a novel function for Tin

signalling. Finally inhibition of IRE1, but not ATF6, results in

even higher levels of ROS compared to the experimental mean

following treatment with paraquat resulting in a high positive

differential DHE/DAPI Z-score (Fig. 3). Thus although

both IRE1 and ATF6 are canonical components of the

UPR, only IRE1 contributes to ROS suppression during

periods of oxidative stress.

We reasoned that if the knockdown of two genes results in

similar differential phenotypic signatures, they functionally

interact during the oxidative stress response. Thus we clustered

the differential signatures and identified high-confidence

clusters (p r 0.1) through multi-scale bootstrap resampling.

We identified 161 functional interactions, 138 that are unique

to cells exposed to oxidative stress (Fig. S1, ESIz). We then

generated a network of interactions where different genes are

nodes, and edges describe that two genes belong to a similar

phenocluster following screening under normal conditions

(Fig. 4, blue edges), or following differential analysis (Fig. 4,

red edges). When two genes belong to the same cluster under

both untreated conditions and following differential analysis

this is denoted by a black edge. Thus this graph describes

how interactions between key genes in the redox homeostasis

network become rewired during periods of oxidative stress.

Perhaps most strikingly through differential analysis we

observed extensive rewiring of functional interactions amongst

Fig. 2 Clustering of phenotypic signatures following RNAi-mediated

inhibition of 121 genes. Viability (via), cell area (size), roundness (round),

and superoxide levels (ROS) were quantified inDrosophila cells following

RNAi-mediated inhibition in unsensitised cells (wt), or in sensitised

genetic backgrounds where either dorsal/Nf-kB (dl) or cactus/IkB (cact)

were also targeted by RNAi. All phenotypic scores are normalised by

converting the raw score into Z-scores. The heat map is generated by

converting Z-scores to colors using the mean, minimum, and maximum

values in each row. Red coloring indicates relatively high Z-scores, blue

coloring indicates relatively low Z-scores. Complete linkage clustering

was performed using a city-block distance metric. Only clusters which

are considered to be of high-confidence (p-value r 0.05) following

resampling are highlighted (black bars and coloured shading).
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ATG genes in response to oxidative stress. For example, many

of the functional interactions observed following screening

and clustering in untreated cells were not observed by

differential analysis. Rather 5/12 ATG genes were part of

two new clusters. The differential phenotypic signatures of

Atg1, Atg2 and Atg6 cluster with that of p53, consistent with

the role of Drosophila p53 in promoting autophagy during

starvation.47 Moreover, the clustering of Atg4 and Atg5 with

the ecdysone receptor (EcR) is consistent with EcR’s ability

to upregulate autophagy upon activation.48 Potentially the

diverse effects of inhibiting different Atg components reflect

disruption of the autophagic process at different stages (e.g.

Atg1 mediated initiation vs. maturation).46

We next sought to further validate whether our systems-

driven analysis of the oxidative stress response has a predictive

value. Given that our data suggest a unique role for IRE1

in promoting redox homeostasis (Fig. 3), interactions with

IRE1 are of particular interest. Activation of IRE1 leads to

activation of its RNAse domain, sequence-specific endoribo-

nucleolytic cleavage, and subsequent splicing of xbp1 mRNA,

leading to the removal of a stop codon normally present in

the 50-end of xbp1 mRNA; which permits the translation of

full-length Xbp1 protein.49 IRE1 can also phosphorylate and

activate Jun N-terminal kinase (JNK).50 While under transient

stress, IRE1 promotes survival, chronic IRE1 activity leads to

cell death.51 But how IRE1 is regulated, and how its output is

tailored (e.g. to promote survival vs. death) are still unclear.

Our network model predicts that Drosophila Jun makes a

unique interaction with IRE1 (Fig. 4) during periods of

oxidative stress, and thus we sought to test the effects of Jun

inhibition on IRE1 activation.

In order to test the effect of gene inhibition on IRE1 activity,

we monitored the IRE1-dependent splicing of endogenous xbp-1

mRNA following exposure of cells to the glycosylation inhibitor

tunicamycin; which induces ER stress and activation of IRE1.49

We quantified xbp1 splicing in tunicamycin versus paraquat, as

tunicamycin is expected to be a much more specific activator of

IRE1. Inhibition of IRE1 by RNAi effectively prevents xbp1

splicing following tunicamycin treatment (Fig. 5). Targeting of

Jun by RNAi also results in significant decreases in splicing of

xbp1 mRNA (Fig. 5) following engagement of the UPR by

tunicamycin. Taken together this finding validates the use of

differential screening to identify novel interactions that occur

uniquely in response to specific stimuli. Moreover, this suggests

that Jun is required for maximal activation of IRE1.

Conclusions

The main contribution of this study is the description of novel

functional interactions between genes that occur in response to

oxidative stress. The fact that functional interactions can be

experimentally validated demonstrates that differential analysis

of multidimensional phenotypic signatures generated using a

combination of readouts across diverse genetic backgrounds is

a useful means by which to describe signalling networks. This

work is a natural extension of recent studies of differential

genetic interactions in yeast.44

Critically, while we have provided insight into the connectivity

between genes/proteins, how inhibition of many of these genes

affects superoxide levels is still unclear. We have shown that

autophagy does not play a major role in regulating superoxide

levels in rich media. Interestingly, the UPR appears to play an

Fig. 3 Difference in superoxide levels in paraquat-treated versus untreated cells. Genes are ordered on the x-axis based on the difference in their

Z-score describing superoxide levels in paraquat-treated cells versus untreated cells (low to high).

Pu
bl

is
he

d 
on

 1
3 

Ju
ly

 2
01

2.
 D

ow
nl

oa
de

d 
by

 H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
07

/0
6/

20
13

 2
0:

47
:0

7.
 

View Article Online

http://dx.doi.org/10.1039/c2mb25092f


2610 Mol. BioSyst., 2012, 8, 2605–2613 This journal is c The Royal Society of Chemistry 2012

important role in redox homeostasis during periods of normal

growth and proliferation, which is consistent with the idea that

ER and redox homeostasis must be tightly coordinated.52 TheUPR

is thought of as acting through three different branches, which are

activated by IRE1, ATF6, and PERK respectively.53,54 Each branch

regulates both specific and overlapping downstream processes that

promote homeostasis. Interestingly in our initial screen for regula-

tors of superoxide we did not isolate PERK, and inhibition of

ATF6 did not affect superoxide levels in response to paraquat. Thus

it is possible that while all three branches of the UPR are activated

by classical ER stress (e.g. the accumulation of unfolded protein),

the IRE1 branch is specific to oxidative stress. Although a model

whereby IRE1 is specifically activated by oxidative stress is com-

plicated by the fact that oxidative stress can inhibit folding.38,55

Further screening under diverse conditions that activate the UPR in

combination with the analysis methods described in this work may

shed light onto the specific activation of different UPR branches.

In the course of these studies we demonstrate the usefulness of

systems-driven methods in identifying novel signalling events.

Specifically, we made the prediction that the TF Jun is a regulator

of IRE1 activity, which we validate by showing that the Jun

inhibition significantly decreases the splicing of xbp1 mRNA

during periods of ER stress. IRE1 can promote Jun-mediated

transcription through phosphorylation and activation of JNK,50

but regulation of the IRE1-Xbp1 axis by Jun has not been

previously observed. While IRE1 activation is largely mediated

directly by unfolded proteins and/or disengagement of ER cha-

perones,50 and it is not yet clear as to how Jun may be involved in

regulating IRE1 mediated splicing of xbp1. This finding could

potentially have a number of important implications as it suggests

that full activation of the IRE1 may require additional signalling

inputs in addition to unfolded proteins, and/or that Jun could be

part of a positive feedback loop which sustains IRE1 activity.

Methods summary

Cell culturing and dsRNA experiments

Drosophila S2R+ cells were cultured in Schneider’s

insect media (Sigma), 10% fetal bovine serum (Sigma), and

Fig. 4 Network-based interpretation of the rewiring of functional interactions during oxidative stress. Each node is a gene that was screened in

both untreated and paraquat-treated cells. Blue edges denote that the genes belong to the same validated cluster following clustering of untreated

phenotypic signatures. Red edges denote that belonging to the same validated cluster following clustering of differential phenotypic signatures.

Black edges denote the genes are part of the same clustering following screening in untreated cells and differential analysis. IRE1 and Jun are

highlighted in light purple. Nf-kB signalling components Kenny, Spz, and Nf-kB are highlighted in red.
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penicillin–streptomycin (Gibco). All dsRNA experiments were

performed using the bathing protocol as described by Ramadan

et al.52 Mouse Embryonic Fibroblasts (MEFs) were cultured in

Dubelcco’s modified Eagle’s F-12 medium, 10% fetal bovine

serum (Sigma), and penicillin–streptomycin (Gibco).

ROS assay

Staining for superoxide was done as described by Owusu-Ansah

et al.30 Briefly, live cells were incubated in the presence of 15 mM
dihydroethidium (DHE) for 15 minutes, washed twice in media,

fixed in 4% paraformaldehyde/0.1% Triton X-100 for 10 minutes,

washed once in phosphate buffered saline (PBS), incubated with

40,6-diamidino-2-phenylindole (DAPI) in PBS for 5 minutes, and

then washed in PBS. Paraquat was added to the cells 18 h prior to

staining/fixation, and rotenone was added to cells for 48 h prior to

staining/fixation.

High-throughput automated image analysis

To calculate the effects of individual dsRNAs ROS levels in a

high-throughput manner, we imaged cells using a PerkinElmer

Opera Microscope using a 60� water immersed objective

using a 405 laser to excite both the DHE and DAPI labels.

450/50 and 600/40 emission filters were used to capture

the DAPI/DHE signal and oxidised-DHE (ethidium) signal

respectively. We imaged 20–35 sites per well. MEFs were

imaged using a 20� air objective. Following imaging, we first

quantified ROS levels by implementing an algorithm via the

Columbus interface (PerkinElmer) that: (1) uses the DAPI

signal (present in all cells) to identify individual cells, detects

nuclear edges, and then calculates nuclear area (in pixels); (2)

identifies cellular boundaries by DHE staining and then

calculates cell area and roundness; (3) calculates the mean

ethidium and mean DAPI signal intensity in nucleus (individual

pixel intensity can range from 0 to 4095 total cell area for each

cell); (3) calculates a ratio of nuclear DHE/DAPI; (4) repeats

steps 1 through 3 for each field; (4) exports a mean value

DHE/DAPI intensity, cell area, and roundness for all cells in

every well. Typically 200–1000 cells are imaged per well.

Initial screens for regulators of superoxide

Genes contributing to superoxide homeostasis were first

isolated in genome-scale screens of the KP and TF sets

(described in detail at www.flyrnai.org). In these initial screens

Drosophila BG-3 cells were used. Unless otherwise denoted, all

RNAi experiments were performed four days after treatment

with dsRNA. All dsRNAs described in this study have been

designed to have zero, or extremely few off-target effects

(OTEs). The KP set targets Drosophila genes that encode

proteins for kinases or phosphatases. Approximately three

amplicons per gene target 563 genes over 8 assay plates.

Unique dsRNAs targeting both kinase and phosphatase genes

are distributed randomly on all eight plates. The TF sub-library

targets the complete set of Drosophila genes that encode transcrip-

tion factors as well as other DNA binding proteins and nuclear

factors. Approximately two amplicons per gene target 993 genes

over 9 assay plates. For combinatorial experiments we added a

second dsRNA to the cells in suspension prior to plating. The

second dsRNA was diluted such that cells in each well were

incubated with an additional 0.25 mg of dsRNA. Because the KP

and TF sets are designed differently, with many more dsRNAs

being tested per gene in the KP set, screens in each set are scored

differently. In unsensitised and sensitised KP screens a gene is

considered to be a potential regulator of ROS if two independent

dsRNAs targeting that gene scores above a Z-score of 1.5, or

below a Z-score of �1.5. In the case of TF screens, a gene is

considered to be a potential regulator of ROS if a single

dsRNA targeting that gene results in a ROS Z-score of above

2.0, or below �2.0. In cases where 2 or more independent

dsRNAs resulted in significant but uncorrelated effects on

ROS levels (e.g. a dsRNA targeting a gene results in Z-score

>2.0 whereas another results in a score o�2.0), they were

eliminated from our hit list. Other genes were considered to be

false positives if their inhibition had similar effects on ROS

levels in both Nf-kB- and IkB-deficient backgrounds, which

would be unexpected based on the fact that IkB inhibits Nf-kB
activity.

Targeted RNAi screens for ROS and viability

The 120 genes described in this study were targeted by 2–3

independent dsRNAs arrayed in a random pattern across two

384-well plates. On each plate, an individual dsRNA is scored

in either 2 or 4 replicates. Each screen (ROS/shape in untreated

cells, ROS/shape in paraquat treated cells) including all

double RNAi conditions was performed in individual batches.

Each plate was screened in duplicate. The viability screen was

performed in a similar manner except that all experiments were

performed in the same batch.

Viability assays

The CellTiter-Glo Luminescent Cell Viability Assay Kit

(Promega) were used to monitor cell viability following the

manufacturer’s instructions.

Fig. 5 Validation of a novel functional interaction identified in our

screen. Cells were transfected with the indicated dsRNAs and then

either mock-treated with DMSO or treated for the indicated times

with 5 mg ml�1 of tunicamycin. Total RNA was purified and RT-PCR

analysis for splicing of endogenous xbp1 mRNA was performed.

xbp1(u): unspliced xbp1 mRNA species; xbp1(s): spliced xbp1 mRNA

species. Error bars represent standard error of the mean from three

replicate analyses.
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Z-Score calculations and differential analysis

Each screen was performed in duplicate, and the weighted

mean DHE/DAPI ratio, cell area, and roundness scores of

replicate wells were calculated using the number of cells

analysed in each well. For viability scores, the mean of

replicate plates was calculated. A Z-score for each feature

(area, roundness, DHE/DAPI ratio, viability) for each well

mean was then calculated by subtracting the mean score of all

wells on all replicate plates in a screen, from the individual well

mean, and dividing by the standard deviation of the replicate

plates. Z is the distance between the weighted mean sample

score and the plate mean in units of the standard deviation.

Z is negative when the raw score is below the mean, positive

when above. For each gene the Z-scores of all wells with

dsRNAs targeting that gene (both experimental and technical

replicates) were averaged to generate final phenotypic signatures.

To calculate a differential phenotypic signature, the Z-scores

that make up signatures of untreated cells were subtracted from

Z-scores that make up the signatures of paraquat treated cells.

Hierarchical clustering

All clustering was performed using Cluster 3.0 (Michiel de

Hoon, Seiya Imoto, Satoru Miyano), which is based on

Cluster (Michel Eisen, University of California, Berkeley).

Clustering was performed by the complete linkage methods

using city-block distance as the similarity metric. All clustering

graphs were generated using GenePattern (Broad Institute of

Harvard and MIT).

Cluster validation

The Pvclust package was used in R to validate the existence

of different clusters. Different p-values were calculated via

multi-scale bootstrap resampling. For phenotypic signatures

derived following screening of untreated cells, a p-value of

r 0.5 was used as a cut-off to determine validated clusters.

For clustering of differential signatures a p-value of r 0.1 was

used as a cut-off to determine validated clusters.

Network generation

The Cytoscape package (www.cytoscape.org) was used to plot

a network of functional interactions.

Xbp1 splicing assay

The splicing of endogeneous Drosophila xbp1 was determined

by RT-PCR using primer sets that detect both the unspliced

and spliced forms of xbp1. The dsRNAs used against IRE1

and Jun in the experiment were DRSC15606 and DRSC07447,

respectively. Mock- or RNAi-treated S2R+ cells were exposed

to 5 mg ml�1 tunicamycin for 0, 4 and 6 h prior to lysis by the

Trizol reagent. cDNA was prepared using MMLuV standard

reagents and random hexamers as recommended by the supplier

(Invitrogen). PCR for assessing IRE1-dependent unconventional

splicing of endogenous xbp1 was performed using the oligo-

nucleotide pair F: CAGATGCATCAGCCAATCCA and R:

CACAACTTTCCAGAGTGAG with the Taq MasterMix

DNA polymerase kit (Qiagen), using 29 cycles and an annealing

temperature of 53 1C. PCR products were resolved in 2%

TBE–agarose gels, UV-imaged in a BioDocIt imaging station

(UVP) under unsaturated conditions and quantified using the

Quantity One BioRad open software. The splicing ratio of

xbp1 is calculated as [xbp1(s)/xbp1(s) + xbp1(u)] � 100.

Dorsal/Nf-jB and cactus/IjB dsRNAs

For combinatorial screens and expression profiling experiments

we used DRSC29023 to inhibit dorsal/Nf-kB and DRSC3501 to

target cactus/IkB.
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