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Abstract

Predicting gene functions by integrating large-scale biological data remains a challenge for systems biology. Here we
present a resource for Drosophila melanogaster gene function predictions. We trained function-specific classifiers to
optimize the influence of different biological datasets for each functional category. Our model predicted GO terms and
KEGG pathway memberships for Drosophila melanogaster genes with high accuracy, as affirmed by cross-validation,
supporting literature evidence, and large-scale RNAi screens. The resulting resource of prioritized associations between
Drosophila genes and their potential functions offers a guide for experimental investigations.
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Introduction

A challenge in systems biology is to assign functions to genes

from the information in large-scale datasets, maximizing the utility

of available information to make predictions of function with

verifiable performance. As initial maps of protein-protein

interaction networks, gene expression profiles, and other large-

scale dataset types have become available for several model

organisms [1–15], machine-learning algorithms—including Bayes-

ian network, Markov random field, decision tree, and Support

Vector Machine (SVM) approaches—have been applied to these

datasets to predict gene function [16–25].

Most function prediction models currently available [16–19,21–

25] in some way incorporate supervised machine learning [26]. In

supervised machine learning, a series of ‘features’ describing the

relationships between either two genes or a gene-function pair are

calculated using known properties of the genes or corresponding

proteins, such as the shortest path in protein-protein interaction

networks or the correlation in gene expression profiles. A set of

positive (known to exist) and negative (known/expected to not

exist) gene-function pairs, along with calculated features for

corresponding genes, are then designated as the training data. In

the learning step, the model generalizes a classifier from the

training data, and uses this classifier to predict a class label for each

instance of input data provided to the model. Generally the class

label is either ‘true’ or ‘false’ for a gene-function pair, although in

some models an intermediate classifier is also trained to assign a

label of ‘sharing function’ or ‘not sharing function’ for a pair of two

genes [22,23]. The performance of these models is usually

evaluated by the ‘‘hide-and-discover’’ strategy of cross-validation,

in which the knowledge space of gene-function pairs is randomly

split into a training set and a test set. The model is trained on the

data in the training set, and then used to predict functions of genes

in the test set by classifying gene-function pairs with ‘true’ or ‘false’

labels. Performance is measured by comparing predictions and

real gene-function associations in the test set.

It can be useful to optimize the importance of features for

different functional categories. For example, while co-expression of

two genes can indicate shared functions between the two genes in

embryonic developmental processes, it is less informative for

cytoskeleton functions, which rely more heavily on physical

interactions between proteins.

To generate a resource of gene function predictions for Drosophila

melanogaster, we applied an approach which used biological relation-

ships to train individual classifiers for each specific functional category

(here either a GO term or a KEGG pathway), thereby optimizing the

importance of each feature extracted from different biological

datasets for the prediction of each function. The datasets we used

to calculate features were protein-protein interaction networks[27],

gene expression profiles [7,28], genetic interaction datasets [29,30],
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conserved protein domains [31] and cross-species sequence similarity

based on BLAST analysis [32,33]. To train our classifier we used a

Random Forest algorithm [34], which constructs an ensemble of

Decision Tree classifiers. The natural resistance of Random Forest to

over-fitting and its excellent performance tackling large-scale datasets

with multiple features [35] makes it a good candidate for function

prediction in Drosophila.

To evaluate prediction performance, we used a typical 10-fold

cross-validation [36] to analyze the sensitivity/specificity and

precision/recall characteristics of the model. We examined the

reliability of our predictions against literature evidence, and

compared our prediction results against positive and negative hits

available in the genome-wide RNAi screening data obtained at the

Harvard Medical School Drosophila RNAi Screening Center

(DRSC, http://flyrnai.org) [37]. The considerable overlap

between our prediction results, RNAi screening datasets and

other literature evidence indicates that our list of prioritized

Drosophila gene-function associations can serve as a guide for future

experimental investigations, including identification of false-

negatives in RNAi screens.

Results

GO terms and KEGG pathway membership prediction for
Drosophila genes

The Gene Ontology (GO, www.geneontology.org) [38] and the

Kyoto Encyclopedia of Genes and Genomes (KEGG) [39] were

our two major sources for functional annotations. As of November

2009, Gene Ontology and FlyBase (www.flybase.org) [30] had

annotated around 11,000 Drosophila genes with over 6,000 GO

terms among the three GO branches: biological process,

molecular function, and cellular component. Here we focused

on the biological process (BP) branch. Each association of a gene

and a GO term is labeled with some GO evidence codes [38],

which denote the sources from which the association was learned.

For the KEGG side, 143 pathways were assigned to 2241

Drosophila genes as of November 2009 (www.genome.jp/kegg). We

also included three well-known pathways not yet represented in

KEGG—JNK Signaling, Insulin/AKT and Hippo pathways—

based on information from The Interactive Fly Database (http://

www.sdbonline.org/fly/aimain/1aahome.htm) [40].

To avoid potential circularity we filtered the GO-gene

associations in the training set by GO evidence codes. All GO

term associations derived from non-experimental (IEA/RCA

evidence codes. IEA: Inferred from Electronic Annotation;

RCA: inferred from Reviewed Computational Analysis) or non-

machine-traceable sources (TAS/NAS/ND/IC evidence codes.

TAS: Traceable Author Statement; NAS: Non-traceable Author

Statement; ND: No biological Data available; IC: Inferred by

Curator), or from the datasets we used to calculate the features

used in the prediction (IEP/IPI/IGI/ISS evidence codes. IEP:

Inferred from Expression Pattern; IPI: Inferred from Physical

Interaction; IGI: Inferred from Genetic Interaction; ISS: Inferred

from Sequence or Structural Similarity) were removed, leaving

only associations with IDA (inferred from direct assays) and IMP

(inferred from mutant phenotypes) codes to be used as true

positives. To remove GO terms that were too broadly defined

(e.g., ‘‘biological process’’ or ‘‘cellular process’’), we excluded GO

terms to which 500 or more Drosophila genes had been assigned.

To train the prediction model we calculated features from four

large-scale biological datasets: protein-protein interactions, co-

expression, genetic interactions, conserved protein domains and

sequence similarity. For each functional category (either a GO

term or a KEGG pathway), a number of ‘‘features’’ were derived

to describe the a priori similarity between the gene in question

(candidate gene) and those genes known to belong to the given

functional category before the prediction (reference genes). Each

feature consisted of the average, maximum and minimum values

of a specific measurement between the candidate gene and all

reference genes in the given function category. These features

were pair-wise shortest paths (the minimum number of steps

needed to connect one node to the other one on a network) in the

protein-protein interaction network and in the genetic interaction

network, correlation of expression profiles in microarray expres-

sion datasets, correlation of genetic interaction profiles, number of

shared protein domains, correlation of protein domain profiles,

and sequence similarity.

Evaluating the performance of GO term and KEGG
pathway prediction model

We used 10-fold cross-validation to evaluate the performance of

our model. All the combinations of annotated genes and functional

categories were randomly split into ten subsamples, taking one

subsample as the test set and keeping the rest as the training set. A

list of classifiers (one classifier for each function) were trained by

the Random Forest Algorithm [34]. These trained classifiers were

then used to calculate the confidence score of true association for

each gene-function pair in the test set. We repeated the process ten

times so that each subsample was used once as the test set

(Figure 1).

We evaluated the performance of GO term prediction and

KEGG pathway membership prediction with Receiver Operating

Characteristic curves (ROC) and Precision-Recall (PRC) curves

(Figures 2, 3). We examined the performance of each independent

feature alone, as well as the effect on performance of leaving each

feature out (Supplemental Figures S3, S4).

For GO term predictions, genetic interactions were the most

informative, followed by sequence similarity, while conserved

protein domains, protein-protein interactions and expression

profiles contributed less (Figure 2A,B). The trend was similar

when we assessed the model performance against different levels of

GO term specificity defined by the number of genes associated

with each GO term (Figure 2C–F). Given that all true associations

in our test sets were derived from direct experiments (inferred from

either mutant phenotypes or direct assays), the high performance

of genetic interactions and sequence similarity features in the

cross-validation indicates that many experiment-derived GO term

associations could have been learned through systematic analysis

of the genetic interaction network and phylogenetics of Drosophila

genes.

For KEGG pathway membership prediction we classified all

KEGG pathways into three groups: metabolism, signaling, and

basic functions (Supplemental Table S1). We evaluated the

performance in each group as well as the overall performance.

The conserved protein domains and sequence similarity features

offered the highest overall performance, despite removal of

homology within KEGG Orthology (KO) groups (groups of gene

orthologs sharing similar functions that have been annotated with

the same conserved pathway by KEGG) from the model. That the

sequence similarity feature remained highly informative suggests

that the KO groups could be further expanded (Figure 3A,B),

especially for metabolism and basic function categories

(Figure 3C,E). For signaling pathway predictions, genetic interac-

tions provided the best performing feature (Figure 3D), while

sequence similarity scored second. We noted that the conserved

protein domains could owe some performance success to the fact

that genes in certain KEGG pathways may have been placed in

the same pathway by virtue of sharing a common protein domain,

Fly Gene Function Prediction
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thereby introducing some level of circularity in the performance

benchmarking. This illustrated the profound difficulty of com-

pletely eliminating dependency between gold standard training

examples and features used in prediction. However, even without

the conserved protein domains feature, the model still performed

well (Supplemental Figure S4).

The lower performance of genetic interactions in the non-

signaling function categories, especially the metabolism pathways

(Figure 3C), can be explained by the lower coverage of genetic

interaction data for genes with these functions in Drosophila.

Genetic interactions have been commonly used to investigate

signaling pathways of Drosophila, as mutating many of these

pathway genes produces phenotypes with significant visible effects

(e.g., abnormal wings or other developmental defects). Genetic

interaction analysis has been less commonly applied to study

metabolism in Drosophila, with this lack being evident in Drosophila

GO term annotations— among 1064 GO annotations (unpropa-

gated, as of February 2009) with the keyword ‘‘metabolic’’ or

‘‘metabolism’’, only two of them (gig and Tsc1, both assigned to

‘‘lipid metabolic process’’) were inferred from genetic interactions

(IGI tag) [30,38]. Indeed, when we restricted the search space of

our test set within genes with genetic interactions only, the

performance of genetic interactions in KEGG pathways did

increase considerably (Supplemental Figure S5).

In summary, genetic interactions, sequence similarity and

conserved protein domains contributed substantially to prediction

success, whereas expression and protein-protein interactions

served to improve the performance in the high-precision region

(top-left of the Precision-Recall curve). The higher performance of

these features is consistent with them directly capturing function

sharing between genes, as 1) genetic interactions mostly describe

the phenotypes of knocked-out or knocked-down genes, 2) the

sequence similarity feature transfers experimentally proven

function associations from orthologs in other species to the

candidate genes, and 3) many conserved protein domains have

long been characterized as regions indispensible for protein

functions. The lower contribution of the protein-protein interac-

tions in our prediction can be explained by the low coverage of

large-scale protein-protein interaction datasets currently available

due to technical limitations and incompleteness of sampling, which

has also been observed for other model organisms [15,41–43]. It is

possible that protein-protein interactions for Drosophila could

become much more useful in function predictions when they

have been more comprehensively sought.

Prediction results and comparison with large-scale RNAi
screening hits

We applied the trained model to make predictions within the

entire unknown space of gene-to-GO term and gene-to-KEGG

pathway associations, and sorted all the newly predicted gene-term

associations according to the confidence of each association given

by the prediction model. Predictions with confidence scores higher

than 0.1 for KEGG pathway associations and higher than 0.2 for

GO term associations are listed in Supplemental Table S2. All GO

Figure 1. Overview of the Function-Specific Classifier model. A. To train the model, features describing relationships between each given
candidate gene and reference genes for a given function Ki were derived from large-scale biological datasets. B. Results were evaluated by 10-fold
cross-validation.
doi:10.1371/journal.pone.0012139.g001
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term association predictions are also readily accessible and

downloadable via the FuncBase website (http://func.med.harvard.

edu/) [44].

To systematically evaluate the quality of these predictions we

turned to genome-wide assays of gene function available from the

Drosophila RNAi Screening Center at Harvard Medical School

(DRSC), where RNAi screens are undertaken to systematically

interrogate signaling pathways (e.g., MAPK, Wingless/Wnt,

Hedgehog, JAK/STAT, and JNK pathways). These RNAi

datasets are independent from the datasets we used for function

predictions (protein-protein interactions, expression profiles and

genetic interactions). Our trained model was applied to all gene-

pathway pairs tested in these RNAi screens. We then assessed the

quality of our predictions against the strong and medium signals in

DRSC RNAi screening results as the positive reference set, and

the non-signal results as the negative reference set, with the

performance of our model assessed as precision vs. recall and

precision as a function of cutoff score (Figure 4). Given the limited

sensitivity inherent to RNAi experiments [45], the performance

gauged by RNAi screens was, as expected, lower than that found

by cross-validation. However, predictions with high confidence

scores achieved high precision, indicating that our top predictions

were well supported by RNAi experiments and hence likely to be

biologically relevant (Figure 4B,D).

To evaluate the statistical significance of the overlap between

our predictions and RNAi screens, we labeled the top 0.5% of the

prediction results ranked by confidence score as positive

predictions, and compared them to RNAi screening data from

DRSC (Supplemental Tables S3, S4). For each gene found with a

strong or medium signal in RNAi screens, we examined whether

we had a positive prediction for the corresponding function on a

keyword-matching basis. We then compared the total number of

matched associations against randomized RNAi screening data.

We found significant overlap (compared to randomized RNAi

data, p,1025; Figure 5) between our computational predictions

and the RNAi screening results, either in specific functions/

pathways (Wnt and MAPK pathways, as well as neuronal

functions) or in overall correspondence between the two studies.

The performance of a canonical supervised machine-learning

model, trained on the same prior features and training space we

used for our function-specific classifier model and differing in that

it aggregates training data for all GO terms, is shown for

comparison (Figure 5). The predictions from our function-specific

classifier model had higher overlap with RNAi results than the

canonical model in all situations examined.

Our prediction results also provided a way to identify potential

false negatives in RNAi screens. In the JAK-STAT pathway the

genes upd3 and BRWD3 were scored 0.632 and 0.530, ranked 5th

and 8th respectively among all Drosophila genes for potential

involvement in the JAK-STAT pathway (Supplemental Table S2).

Neither gene scored positively in the JAK-STAT screen. However,

the upd3 gene is required in the fat-body-specific activation of the

Drosophila JAK-STAT pathway [46], and the BRWD3 gene is a

positive regulator of JAK-STAT pathway found in a third-party

RNAi screen [47]. Hence, the prioritized gene-function pairs we

provided could serve as a useful resource to identify pathway

components that might otherwise be missed by RNAi screening

alone.

To examine the quality of our predictions in greater detail on a

specific example, we compared prediction results for the Drosophila

c-Jun N-terminal kinase (JNK) pathway to a recently published

RNAi dataset specific for JNK pathway activations [48]. We found

four genes (nec, CG7338, Rac2 and Mnn1) in the top 5% by

prediction score that were shown to result in activation of JNK

signaling when knocked down by RNAi (Supplemental Table S5).

The confidence scores we assigned to the four genes roughly

correlated with the strength of JNK activation signals upon RNAi

of these genes. The nec and CG7338 genes were among our top

predictions for the JNK pathway (0.872 and 0.639, ranked 1st and

3rd respectively, Supplemental Table S2) and showed high JNK

activation when knocked down by RNAi. Rac2 had a lower

confidence score (0.338) and lower JNK activation signal, while

Mnn1 had the lowest confidence score and JNK signal.

Discussion

The goal of function prediction is to infer novel functions for genes

to help prioritize hypothesis-driven experimentation. The available

evidence allows current prediction methods to quantify the shades of

gray in gene function annotation. Therefore, the goal of experiment-

prioritization is better approached not by assigning functions to genes

in a binary fashion, but rather by prioritizing the most promising novel

gene-function associations for future small-scale investigations

[19,49,50]. Here we have provided a genome-wide resource of

prioritized associations between Drosophila genes and their potential

biological functions. Our model also helps to indicate false negatives

in RNAi screening results, which often arise due to limited sensitivity

in RNAi experiments [45] caused by both limited RNAi efficiency

and tissue specificity of gene expression. High-scoring predictions not

already verified in published screens could become interesting

candidates for higher-sensitivity validation experiments, as suggested

in our comparison with systematic RNAi screening data.

For the experimentalist users of function predictions, the quality

of the predictions is an important concern. Currently available

models generally rely on cross-validation for quality assessment of

model performance, although some models use literature-mining

and small-scale forward genetics assays to characterize the quality

of a few prioritized prediction results [51]. We demonstrated the

high performance of our prediction model relative to independent

large-scale RNAi results that were not used in training our

computational models. The significant overlap between our

computational predictions and RNAi screening results suggests

that RNAi screen results can be improved by using computational

predictions to guide experiments, performing RNAi screens in

size-reduced, prioritized subspaces predicted by our model, thus

allowing more tissue types or experimental conditions to be tested

with the same resources.

Materials and Methods

Sources of datasets
Genome-wide gene expression data across different develop-

mental stages of Drosophila was obtained from the Berkeley

Drosophila Genome Project (BDGP) [7] (www.fruitfly.org), which

provided the expression data collected during Drosophila embryo-

genesis, and from a dataset [28] which covered the life cycle of

Drosophila. Additional expression data for Drosophila genes were

Figure 2. Performance of the GO term prediction model. Receiver Operating Characteristic curves (A) and Precision-Recall curves (B) for the
overall performance and contribution of each feature in GO term (biological process, BP) prediction. Precision-Recall curves for the GO term
prediction model for GO terms with various degrees of specificity, i.e., those that have been annotated with 2–25 genes (C), 25–50 genes (D), 50–100
genes (E), and 100–500 genes (F).
doi:10.1371/journal.pone.0012139.g002
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Figure 3. Performance of the KEGG pathway prediction model. Receiver Operating Characteristic curves (A) and Precision-Recall curves (B)
for the overall performance and contribution of each feature in the KEGG pathway prediction. Precision-Recall curves for the performance of the
model in predicting metabolism only (C), signaling pathway only (D), basic functions (E), and all non-metabolism functions (F).
doi:10.1371/journal.pone.0012139.g003
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obtained from a variety of published datasets[52–74] at NCBI

Gene Expression Omnibus (GEO) (Supplemental Table S7).

Genome-wide gene sequences were downloaded from NCBI

RefSeq database [32]. GO terms and gene-term associations were

downloaded from the February 2009 snapshot of Gene Ontology

database [38] (www.geneontology.org). Genetic interactions were

obtained from BioGRID (www.thebiogrid.org) and FlyBase (www.

flybase.org) [29,30]. Physical protein-protein interactions in

Drosophila were obtained from the Comprehensive Drosophila

Interactions Database v5.0 (DroID, www.droidb.org) [27].

Conserved protein domain information was downloaded from

InterPro (www.ebi.ac.uk/interpro/) [31]. Pathway annotations

were downloaded from Kyoto Encyclopedia of Genes and

Genomes (KEGG, www.genome.jp/kegg) [39].

Random Forest algorithm, prediction model and prior
features

We used the randomForest package for R-language (http://cran.r-

project.org/web/packages/randomForest/index.html) [75] to train

and test our prediction model. For each functional category (either a

KEGG pathway or GO term) a Random Forest classifier was trained,

and for each classifier 500 decision trees were generated. We left

other parameters at default levels as defined by the randomForest

package.

Figure 4. Assessing prediction quality against RNAi screening results. Precision-Recall curves (A) and the curves for precision vs. confidence
score threshold (B) for the quality of GO term prediction measured by DRSC RNAi screening results; Precision-Recall curves (C) and the curves for
precision vs. confidence score threshold (D) for the quality of KEGG pathway membership prediction measured by DRSC RNAi screening results.
doi:10.1371/journal.pone.0012139.g004
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Figure 5. Comparison between GO term/KEGG pathway prediction and DRSC RNAi screening hits. A–B, GO/KEGG predictions matched
with RNAi screen results compared to randomized RNAi screen data. C–E, individual pathway/function predictions matched with RNAi screen results
compared to randomized RNAi screen data. For comparison, we show performance of a supervised machine-learning model trained using the same
algorithm and datasets except that it aggregates all GO terms/KEGG pathways in its training as has been traditionally done.
doi:10.1371/journal.pone.0012139.g005
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For the protein-protein interaction feature, pair-wise shortest path

on the protein-protein interaction network was calculated using the

Johnson Algorithm [76] as provided by the Boost Graph Library

(www.boost.org/libs/graph/, http://search.cpan.org/perldoc?Boost::

Graph). For microarray expression data, we calculated Pearson-

Correlation Coefficients (average method) to measure the correlation

between the expression profiles [7,28] of a pair of genes. For genetic

interactions we used binary values (0 or 1) to describe the existence of a

genetic interaction (no matter whether it was a phenotypic

enhancement or suppression) between a pair of genes. We also used

the shortest path between two genes on the genetic interaction

network as an additional feature of genetic interactions.

The genetic interaction profile for a given gene X was a binary

vector describing the existence of genetic interactions between X
and all other genes. The genetic interaction profile feature for a

pair of genes was the Pearson-Correlation Coefficient (average

method) between their genetic interaction profiles. Genetic

interaction profiles could help to identify genes in the same

pathway whose function was also achieved by another redundant

pathway (Supplemental Figure S1A).

The shared protein domains feature includes two values: 1) the

number of conserved protein domains shared between two

proteins X and Y, denoted as S; and 2) the ratio between S and

the total number (U) of unique domains on the two proteins X or

Y. The protein domain profile for a given gene X was a binary vector

describing the existence of each human protein domain in the

IntePro database on gene X. The protein domain profile feature

for a pair of genes was the Pearson-Correlation Coefficient

(average method) between their protein domain profiles.

Sequence similarity was calculated using BLASTp [33] based

on the Reciprocal Best Hits (RBH) approach [77]. The sequence

similarity feature included two scores: pair-wise similarity and

cross-species functional inference. To calculate the pair-wise

similarity score, we counted the number (S) of shared orthologs

between two genes X and Y, as well as the size (U) of the union of

all their orthologs. The sequence similarity score for X and Y was

then calculated as S/U. To calculate the score for cross-species

function inference, for each candidate gene X and a given function

F, we counted the number (A) of orthologs of gene X known to be

associated with function F, and the number (B) of all its orthologs,

and the score was then calculated as A/B. To prevent circularity

caused by learning the functions of gene X from the functions of its

orthologs in the same KO (KEGG Orthology) group to which X
belonged, sequence similarity was not calculated between genes

within the same KO group in KEGG. Similarly, ISS-tagged

(Inferred from Sequence Similarity) gene-term associations in

Gene Ontology were also excluded from the training and test sets.

Model training and performance evaluation
The combination space of genes and functions was randomly

split into 10 subsamples, with one designated as the test set, the

others as training sets. For each function Ki a classifier Ci was

trained and used in the test set to predict candidate genes for

function Ki. The process was repeated ten times so that each

subsample was used as the test set once. All the predictions were

then compared to known associations to calculate the perfor-

mance. To make novel predictions, the model was trained in the

entire known space of gene-function pairs and run in the entire

unknown space of gene-function pairs.

Keyword-matching between function prediction and
RNAi screening hits

From the titles of the 24 published DRSC RNAi screens, we

chose keywords which can be found in the descriptions of

corresponding KEGG pathways or GO terms (Supplemental

Table S6). For those instances where one RNAi screen was

matched to multiple KEGG pathways or GO terms, we

considered these pathways or terms as one general function

matched to the screen. For any gene X found as a positive hit in a

given RNAi screen, all the positive predictions associating gene X
with the matched KEGG pathways or GO terms were counted as

successful recoveries of the hit.

Canonical supervised learning model built for
comparison purpose

To compare the performance of our model in recovering

positive hits in RNAi screens with the canonical supervised

learning model, we trained a Random Forest model with the

same prior features and training sets used in our model. In this

model, objects were gene-function pairs, labels were either ‘‘yes’’

or ‘‘no’’ (indicating whether a gene-function pair was labeled as a

valid association or not), and features for a given gene-function

pair were a variety of measures (see Materials and Methods) of

similarity between the given gene and all positive reference genes

for that function. All gene-function pairs in the training set were

used to train a single classifier which was used to make

predictions in the test set of gene-function pairs. These

predictions were then compared to the results of RNAi screens.

The performance of the canonical model in recovering positive

RNAi hits was compared to that of the function-specific model

(Figure 5).

Code performance and comparison with canonical
supervised machine-learning model

We executed our code on a Dell PowerEdge server equipped

with 32 GBytes of RAM and 8 Intel Xeon 2.8 GHz processors

running Red Hat Linux Advanced Server 64 bit Edition 4. The

training of our function-specific classifier model took approxi-

mately 43 minutes for KEGG pathway membership prediction

and 3 hours 57 minutes for GO term prediction (compared to the

performance of the canonical model which required 3 hours 16

minutes for KEGG pathway prediction and 15 hours 20 minutes

for GO term prediction, Supplemental Figure S2).

Supporting Information

Table S1 Classification of KEGG pathways.

Found at: doi:10.1371/journal.pone.0012139.s001 (0.04 MB

XLS)

Table S2 GO term and KEGG pathway membership predic-

tions with confidence scores above 0.2 (for GO term predictions)

or above 0.1 (for KEGG pathway predictions).

Found at: doi:10.1371/journal.pone.0012139.s002 (3.91 MB

XLS)

Table S3 KEGG pathway predictions matched to DRSC

screening.

Found at: doi:10.1371/journal.pone.0012139.s003 (0.03 MB

XLS)

Table S4 GO-term predictions matched to DRSC screening.

Found at: doi:10.1371/journal.pone.0012139.s004 (0.04 MB

XLS)

Table S5 JNK pathway prediction compared to RNAi data at

the Japan National Institute of Genetics (NIG).

Found at: doi:10.1371/journal.pone.0012139.s005 (0.03 MB

DOC)
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Table S6 Keyword matching between RNAi screens and gene

functions.

Found at: doi:10.1371/journal.pone.0012139.s006 (0.02 MB

XLS)

Table S7 Additional Expression Profiles from NCBI Gene

Expression Omnibus (GEO).

Found at: doi:10.1371/journal.pone.0012139.s007 (0.10 MB

XLS)

Figure S1 Genetic interaction profiles. A, Both pathway P1 and

P2 drive downstream processes to achieve a function; loss of genes

within either pathway will not abolish the function. However,

when a pair of genes from the two pathways respectively are lost

(e.g. a-x, a-y, c-x), both pathways will be broken and a loss-of-

function phenotype will emerge. B, Genes within the same

pathway have similar genetic interaction profiles, which could be

useful in categorizing a,b,c and x,y,z into pathway P1 and P2

respectively.

Found at: doi:10.1371/journal.pone.0012139.s008 (1.07 MB TIF)

Figure S2 Code performance of Functional-Specific Classifier

model and canonical supervised machine-learning model.

Found at: doi:10.1371/journal.pone.0012139.s009 (0.51 MB TIF)

Figure S3 Performance of GO prediction when removing one

feature at a time from the model. Receiver Operating Character-

istic curves (A) and Precision-Recall curves (B) for the overall

performance and the performance when removing one feature at a

time in GO term (biological process, BP) prediction. Precision-

Recall curves for the GO term prediction model for GO terms

with various degrees of specificity, i.e., those that have been

annotated with 0–25 genes (C), 25–50 genes (D), 50–100 genes (E),

and 100–500 genes (F).

Found at: doi:10.1371/journal.pone.0012139.s010 (1.73 MB TIF)

Figure S4 Performance of KEGG prediction when removing

one feature at a time from the model. Receiver Operating

Characteristic curves (A) and Precision-Recall curves (B) for the

overall performance and the performance when removing one

feature at a time in the KEGG pathway prediction. Precision-

Recall curves for the performance of the model in predicting

metabolism only (C), signaling pathway only (D), basic functions

(E), and all non-metabolism functions (F).

Found at: doi:10.1371/journal.pone.0012139.s011 (2.20 MB TIF)

Figure S5 Performance of KEGG prediction when limited in

the gene space of genetic interaction network. Receiver Operating

Characteristic curves (A) and Precision-Recall curves (B) for the

overall performance and contribution of each feature in the

KEGG pathway prediction. Precision-Recall curves for the

performance of the model in predicting metabolism only (C),

signaling pathway only (D), basic functions (E), and all non-

metabolism functions (F).

Found at: doi:10.1371/journal.pone.0012139.s012 (1.85 MB TIF)
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