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Abstract

In multicellular organisms, cell number is typically determined by a balance of intracellular
signals that positively and negatively regulate cell survival and proliferation. Dissecting
these signaling networks facilitates the understanding of normal development and tumori-
genesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embry-
onic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of
PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the
investigation of downstream and parallel signaling networks, based on the ability of Pvr to
activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundant-
ly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a ge-
nome wide RNAI screen for regulators of cell number in a sensitized, Pvr deficient
background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as
a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and
ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Sup-
pressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role
for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-
survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes
of cell number regulation by EcR and RTK signaling. We define common phosphorylation
targets of Pvr and InR that include regulators of cell survival, and unique targets responsible
for specialized receptor functions. Interestingly, our analysis reveals that the selection of
phosphorylation targets by signaling receptors shows qualitative changes depending on the
signaling status of the cell, which may have wide-reaching implications for other cell
regulatory systems.
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Author Summary

Signaling networks that drive cell survival and proliferation regulate cell number in devel-
opment and disease. We use a simple Drosophila model of cell number control, which cen-
ters on PDGF/VEGEF receptor signaling. Performing a genome-wide RNAi screen under
Pvr-sensitized conditions, we identify regulators of cell number that have not been found
in conventional screens. Validation by in vivo genetics reveals previously unrecognized
roles for EcR and InR in the balance of cell survival in the Drosophila embryo. Phospho-
proteomic analysis demonstrates distinct mechanisms of cell survival regulation by EcR
and receptor tyrosine kinase signaling. It further identifies common phosphorylation tar-
gets of Pvr and InR including regulators of cell survival, and receptor-specific phosphory-
lation targets mediating unique functions of Pvr and InR. Importantly, the study provides
precedence that the selection of phosphorylation targets by signaling receptors can change
with the signaling status of the cell, which may have wide-reaching implications for other
cell regulatory systems.

Introduction

The regulation of cell number varies greatly and typically depends on developmental and envi-
ronmental stimuli that determine the intracellular balance of pro- and anti-death, and prolifer-
ative signals [1-3]. Proto-oncogenes and tumor suppressors play roles as regulators of cell
number and the pathological extension of cell survival is a major hallmark of tumorigenesis
[4]. Accordingly, understanding the complex signaling networks that regulate cell survival is
an important yet incompletely accomplished goal [4,5], which can be facilitated by studying a
simple model organism.

Blood cells in the fruitfly Drosophila melanogaster have been instrumental in the discovery
of fundamental concepts in immunity, hematopoiesis and wound healing [6-11], but they are
also a convenient model to study mechanisms that regulate cell number. In particular, the Dro-
sophila PDGF/VEGF Receptor (Pvr), a member of the Receptor Tyrosine Kinase (RTK) family,
controls anti-apoptotic survival signaling in Drosophila blood cells (hemocytes) in vivo and in
the embryonic cell line Kc in culture [12]. In other instances, Pvr has been reported to regulate
cell proliferation [13,14], differentiation [15,16], cell size [17,18], cytoskeletal architecture [19]
and cell migration [20-22]. Drosophila Pvr therefore parallels roles of the vertebrate family of
PDGF/VEGF Receptors in development and disease [12,21,23-26].

Here, we took advantage of the role of Pvr in embryonic blood cell survival and performed a
systematic RNAi screen to identify regulators of cell number, using the Drosophila cell line Kc
under sensitized conditions of Pvr knockdown. The screen identified enhancers and suppres-
sors of the Pvr RNAIi phenotype, many of which were not found in conventional RNAi screens
examining cell growth and viability. In particular, we found that knockdown of InR enhanced
the Pvr RNAi phenotype while knockdown of the Ecdysone receptor (EcR) [27] and its co-re-
ceptor ultraspiracle (usp) [28] suppressed the Pvr RNAi phenotype. We confirmed functional
roles for these genes related to Pvr both in cell culture and in vivo. Phosphoproteomic analyses
revealed major differences in the signaling signature of Pvr deficient cells rescued by activation
of InR as compared to inactivation of EcR. Further, our analysis identified distinct sets of phos-
phorylation targets, common to both Pvr and InR, and unique to each receptor. Most impor-
tantly, we provide precedence that the selection of phosphorylation targets by signaling
receptors can depend on the signaling status of the cell, which may have wide-reaching
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implications for cell regulatory systems in animal development, disease, and the experimental
and therapeutic manipulation of signaling pathways.

Results
Pvr signaling in the embryonic hemocyte cell line Kc

Previously, we demonstrated that the Drosophila PDGF/VEGF Receptor, Pvr, is essential for
anti-apoptotic survival in embryonic hemocytes and in the related cell line K¢, which maintains
autocrine Pvr signaling [12,29]. Taking advantage of these systems, we sought to examine the
signaling networks that mediate anti-apoptotic survival and regulate cell number.

First, we confirmed that RNAi-mediated knockdown of Pyvr induces apoptotic cell death in
Kc cells. RNAi silencing of the Drosophila inhibitor of apoptosis DIAPI, or thread (th), served
as positive control (Fig. 1A). Expression of the baculovirus inhibitor of apoptosis p35 [30]
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Fig 1. Signaling pathways in Pvr survival signaling. (A, B) Comparison of Kc and p35-expressing Kcp35 cells, studying the effects of Pvr RNAi silencing
on cell death and cell proliferation. (A) dsRNA treatment targeting Pvr or thread (th) (positive control) causes increased fractions of cells undergoing
apoptosis, measured by TUNEL assay. As expected, apoptosis is largely suppressed in the presence of p35 (Kcp35 cells). (B) EAU proliferation assay in Kc
and Kcp35 cells. Suppression of programmed cell death by p35 reveals that Pvr silencing results in reduced proliferation. (C) Representative immunoblots of
phospho-mediators of the Mek/Erk and Akt/Tor pathways. RNAi silencing of genes as indicated in the top panel. Note that Pvr knockdown leads to reduced
activities of both pathways. The bar graphs (right) represent ratios of quantified phosphoprotein signal to total protein signal, relative to GFP control
knockdown. The data are representative of three independent experiments. (D, E) Combined knockdown of Akt/Tor and Mek/Erk pathway components (as
indicated) does not match the effect of Pvr silencing, suggesting additional, redundant survival pathways downstream of Pvr. (D) CellTiter-Glo assay
measuring ATP concentration as a readout of cell number. Z score relative to all samples is shown. (E) Cell counts in an assay corresponding to (D).

(F) Hypothesis of Pvr-mediated survival and proliferation signaling. Pvr survival signaling relies on several redundant pathways (Akt, Mapk, Pathway X). In
addition, parallel pro-and anti-death pathways (Pathway Y, Z) are proposed. In Pvr loss of function conditions, selective re-activation of an anti-apoptotic
pathway by silencing of a suppressor, or inhibition of a pro-apoptotic regulator, suffices to restore cell numbers.

doi:10.1371/journal.pgen.1005056.g001
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rescued hemocyte survival, leading us to establish a selected pool of Kcp35 cells (Kep35 cells,
Fig. 1A). Immunoblotting confirmed that Pvr knockdown was equally efficient in Kc and
Kcp35 cells (S1 Fig). Closer examination by incorporation of the thymidine nucleoside analog
EdU (5-ethynyl-2’deoxyuridine) in Kc versus Kcp35 cells revealed that Pvr also moderately
contributes toward cell proliferation in this system (Fig. 1B), an effect that could not be distin-
guished in a previous study employing cell cycle profiling [12]. Reduction in proliferation was
also suggested by immunoblotting, where lysates of equal numbers of cells showed a decrease
in the proliferation marker phospho-histone H3 (pHH3) in Pvr knockdown samples (S1 Fig).

Using Kc cells, we queried signaling pathways that might be involved in Pvr-dependent cell
survival and proliferation. Examining activity of the Akt/TOR and Mek/Erk pathways by using
antibodies to phosphorylated forms of S6Kinase (S6K, an Akt pathway target), Mek and Erk,
we found that both pathways are active in Kc cells. Pvr RNAI led to a significant reduction in
the phosphorylation levels of these proteins, indicating that Pvr is a major activator of these
pathways in Kc cells. Single signaling mediator knockdowns of Akt, the TOR-associated Rap-
tor, S6K, Mek and Erk served as controls (Fig. 1C). Phosphorylation signals were also quanti-
fied and displayed as a ratio with the amount of unphosphorylated signaling mediator
(Fig. 1C). These findings suggest that Pvr triggers activation of the Akt/TOR and Mek/Erk and
pathways, thereby supporting anti-apoptotic cell survival and proliferation.

Next, we asked whether silencing of either or both of these pathways is sufficient to affect
cell viability and mimic loss of Pvr function. Combining dsRNAs targeting various mediators
of the Akt/Tor and Mek/Erk pathways, we found that, despite efficient knockdown of the genes
(S2 Fig), neither single nor simultaneous inhibition of both pathways caused a significant re-
duction of cell numbers, as quantified by CellTiterGlo assay based on ATP content (Fig. 1D),
and cell counting (Fig. 1E). In contrast, Pvr RNAi, showed significant decreases in cell number
(Fig. 1D, E). This predicted the presence of one or more additional, redundant cell survival/
proliferation pathway(s) downstream of Pvr (X, Fig. 1F), and/or parallel signaling pathways
that contribute to the overall survival and proliferation of the cell (Y’, Fig. 1F).

A genome-wide RNAI screen for modifiers of Pvr

Based on our prediction, we sought to identify other signaling pathways that contribute to the
anti-apoptotic survival of Kc cells. We hypothesized that re-activation of just one survival or
proliferation pathway would be sufficient to rescue cell numbers in Pvr deficient cells (Fig. 1F).
Indeed, silencing of negative regulators of the Akt/Tor and Erk pathways rescued the Pyr RNAi
phenotype, validating our screening approach. For these experiments, we ruled out that silenc-
ing of downstream signaling mediators such as Akt would result in upregulation of Pvf2 expres-
sion, the major Pvr ligand in Kc cells that mediates autocrine signaling (S3 Fig). Expanding our
approach, we screened the DRSC Genome-Wide RNAI library 1.0 (Drosophila RNAi Screening
Center, Harvard Medical School) for modifiers of cell number, specifically under conditions of
Pyr RNAi-mediated silencing compared to a control background (Fig. 2A). The DRSC 1.0 set
targets 22,914 distinct amplicons based on Flybase release 5.51 of the Drosophila genome, cor-
responding to 13,777 unique genes [31], 6944 of which are expressed in Kc cells [29]. Screening
was performed in 384-well format, quantifying ATP content as a readout of cell number (Cell-
TiterGlo). To determine an increase or decrease over the average value of ATP content, Z
scores were calculated for each well. Focusing on those dsRNAs that show differential effects in
Pvr knockdown (Pvr RNAI) versus control cells (GFP RNAi), we calculated the difference of
each of the Z scores (ZDiff = Z[Pvr]-Z[GFP]), and selected amplicons with ZDiff> = 2 and
ZDiff< = -2 as primary screen hits (S1 Table). Cluster analysis of the values Z[Pvr], Z[ GFP],
and ZDiff for each amplicon revealed three distinct classes of signatures, i.e. Pyr Suppressors,
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Fig 2. Genome-wide RNAi Pvr modifier screen. (A) Screen scheme of the Primary and Secondary Screens, and subsequent single gene analysis.

(B) Cluster analysis of primary screen hits, highlighting a fraction of Pvr Enhancers including InR (arrow) and Pvr Suppressors including EcR and usp
(arrows). (C) Protein complexes enriched in the list of Pvr Suppressors from the RNAi screen, identified using COMPLEAT [154]. Node color correlates with
phenotypic strength where red is strongest and purple is weakest, while gray nodes were not identified in the screen. Note p-values are approximate given
that the random proteins used to generate the p-value are unique for each of 1000 random sets.

doi:10.1371/journal.pgen.1005056.g002
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Pyr Enhancers, and Pvr ‘Upstream Genes’ (Fig. 2B). By our cutoff criteria, 64 amplicons scored
as suppressors of the Pvr knockdown phenotype, rescuing cell numbers more effectively in the
Pyr RNAi background compared to control cells. 65 amplicons scored as Pvr Enhancers, exac-
erbating the Pvr knockdown phenotype. We classified 290 amplicons as Pvr ‘Upstream Genes’,
reducing cell numbers in control cells, but having rather minor effects in the Pvr silenced back-
ground. Among this group we found amplicons targeting Pvr itself and many ribosomal pro-
teins, suggesting that many of the targeted genes play a role in the production or activation of
Pvr (S1 Table).

Subsequent secondary testing of screen hits was carried out for Pvr Suppressors and Pvr
Enhancers. We selected 47 suppressor genes and 47 enhancer genes based on a cutoff of
ZDiff> = 2.2 and ZDiff< = -2.2 (S2 Table) and synthesized non-overlapping alternative
amplicons that were free of 19bp or larger overlaps with other genes, in order to avoid off-
target effects [32,33]. As in the primary screen, amplicons were tested for their ability to mod-
ify cell number, specifically comparing Pvr knockdown cells relative to control cells (S2
Table). To identify promising ‘high confidence candidates’ for further analysis, we calculated
the average of the ZDiff scores among all amplicons of a gene from the primary and second-
ary screens (ZDiffFinal) (S3 Table). Based on ZDiffFinal values of > = 1.6 and < =-1.2, we
report 30 high-confidence Pvr Suppressors and 14 high-confidence Pvr Enhancers (S3
Table). Z value cutoffs were guided by the scores of predicted genes within the set, such as
members of the Akt/Tor and Mek/Erk pathways. Candidates of specific interest were con-
firmed by live/dead cell counting, omitting genes with obvious roles in RNA interference,
such as AGO2 (54 Fig).

Relatively few genes scored as Pvr Enhancers. Among those, we identified the RTK InR
[34], and cropped (crp) encoding the helix-loop-helix transcription factor that is a homolog of
the mammalian transcription factor AP-4 [35]. The screen also identified tonalli (tna), encod-
ing a protein similar to mammalian ZMIZ1 and ZMIZ2 involved in sumoylation [36] that in-
teracts genetically with the Brahma ATP-dependent chromatin remodeling complex in
Drosophila [37].

Among the Pyvr Suppressors, the screen yielded all known tumor suppressors and negative
regulators of the Akt/TOR pathway, including Phosphatase and Tensin Homolog (Pten), Tuber-
ous Sclerosis Protein 1 (Tscl), gigas (gig)/ Tuberous Sclerosis Protein 2 (Tsc2), SNF4A-a and -y,
also known as AMP-Activated Protein Kinase subunits a and y(AMPK-a and AMPK-y), Fork-
head Box Protein (foxo), and Lobe (L), a protein with similarities to the vertebrate Proline-rich
Akt substrate of 40 kDa (PRAS40) [38-41]. We further identified negative regulators of the
Ras/Erk pathway Mitogen-activated protein kinase phosphatase 3 (Mkp3), and microtubule star
(mts) and widerborst (wdb), which encode components of the protein phosphatase PP2A com-
plex [42-44]. We calculated which protein complexes were over-represented with respect to
the frequency of their components among the high confidence hits in the RNAi screen, and
found, besides the PP2A complex, two other major protein complexes among the high confi-
dence hits in the RNAi screen (Fig. 2C): the ecdysone receptor complex, consisting of the nu-
clear hormone receptors EcR and usp [27,45], and the Brahma SWI2/SNF2 family ATPase
chromatin-remodeling complex, comprising osa and dalao [46,47]. Other Pvr Suppressors
were CG6182, an ortholog of mammalian TBCI domain member 7 (TBC7), and GckIII, and
CG31635, an ortholog of mammalian LRRC68. Given the reported interplay between ecdysone
and insulin signaling during development [48], we wanted to dissect whether common and/or
distinct downstream mechanisms mediate Pvr suppression, and therefore chose InR and EcR /
usp for in vivo validation.
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Pro-apoptotic effects of ECR/Usp signaling and anti-apoptotic effects of
insulin signaling in cell culture

Using Kc cells, we examined the functional roles of InR and EcR/Usp in more detail. EcR and
Usp form a heterodimer and are induced by binding of the steroid hormone 20-hydroxyecdy-
sone (20E) [45,49]. Signaling by the EcR complex plays a major role during molting and meta-
morphosis [50], yet a role in embryonic cell death and cell number control has not been
established [51]. We confirmed the effects of silencing or stimulating InR, or silencing EcR or
usp, on Pvr RNAi-induced apoptosis using TUNEL assays, and we quantified effects on prolif-
eration using EAU incorporation in Kcp35 cells (Fig. 3A-C). Consistent with the results from
the screen, we found that, in combination with Pvr knockdown, silencing of InR exacerbated
apoptosis. Further, silencing of EcR or usp, or stimulation of InR with insulin rescued apoptosis
(Fig. 3A). In contrast, when examining proliferation, only insulin stimulation or a Tsc2/gigas
(gig) RNAi Akt pathway control significantly suppressed proliferation defects, suggesting that
EcR and Usp mainly function in the regulation of cell death, rather than proliferation (Fig. 3B,
C). InR knockdown seemed to enhance the reduction of EQU incorporation in Pvr knockdown
cells, but differences were not statistically significant based on three independent biological
replicate experiments (Fig. 3C).

Next we examined the effects of ecdysone stimulation. Anti-proliferative effects of ecdysone
in Kc cells have been reported previously [52-54], but whether ecdysone also has direct pro-
apoptotic effects in embryonic cells not been determined. To test this, we stimulated Kc cells
with 20E at concentrations close to physiological levels (0.01ug/ml) [54,55]. Overall, 20E in-
duced a marked reduction in cell number at stimulation times of >48h (Fig. 3D). As expected,
it resulted in a reduction of cell proliferation as measured by EdU incorporation, both in Kc
and in apoptosis-resistant Kcp35 cells (Fig. 3E). However, TUNEL analysis showed a substan-
tial increase in apoptotic cells upon 20E stimulation, which was largely suppressed in Kcp35
cells (Fig. 3F). 20E did not cause a decrease of Pvr protein levels (S5 Fig), suggesting that molec-
ular mechanisms other than Pvr downregulation account for the observed increase in apopto-
sis. During metamorphosis-associated programmed cell death (PCD), several genes have been
described as ecdysone-induced pro-death targets, in particular Ecdysone-induced protein 93F
(E93), broad (br), Ecdysone-induced protein 74EF (E74A), and reaper (rpr) [56-58]. When we
examined the expression levels of these genes during ecdysone stimulation of Kc cells we found
that, indeed, rpr and E93 levels increased from the first day of 20E stimulation (Fig. 3G), con-
sistent with the induction of apoptosis. We also examined whether Pvr knockdown would have
an effect on the expression of rpr and E93 but found no significant difference relative to con-
trols (S6 Fig).

In summary, we conclude that the EcR complex has pro-apoptotic functions in the cell line
Kc, which become apparent under sensitized conditions of Pvr loss of function, or experimen-
tal addition of 20E.

EcR and InR are opposing modifiers of Pvr in vivo

To test the role of InR and EcR in the suppression and enhancement of apoptosis in vivo, we ex-
amined the function of these genes in the survival of hemocytes in the Drosophila embryo. Dro-
sophila embryos typically show a developmentally fixed number of ~600 hemocytes post stage
11 until early stage 17, and loss of Pvr signaling causes a rapid decline in hemocytes due to
their apoptotic death and phagocytic clearance by the small number of remaining live hemo-
cytes [12]. Based on our findings in Kc cells, we predicted that inhibition of EcR would rescue,
and inhibition of InR would enhance, Pvr loss-of-function in embryonic blood cells [12]. In-
deed, hemocyte-specific suppression of EcR signaling by expression of dominant-negative
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Time points and concentration as indicated. (F) Percentage of TUNEL positive cells in Kc and Kep35, treated with 20E or control solvent for the indicated
times. (G) Upregulation of ror and E93 upon stimulation with 20E in Kc cells, as determined by gRT-PCR.

doi:10.1371/journal.pgen.1005056.g003

forms of EcR [59,60] partially rescued hemocyte counts in Pyr’ mutant embryos (Fig. 4), re-
sembling rescue by the baculovirus inhibitor of apoptosis, p35 [12] (see also Fig. 4A). Con-
versely, expression of dominant-negative InR in hemocytes enhanced the Pvr phenotype,
further reducing embryonic hemocyte numbers (Fig. 4). Consistently, we previously demon-
strated that activated PI3K, a positive mediator of the Akt/TOR pathway downstream of InR,
can partially rescue the Pvr mutant in vivo phenotype [12]. To confirm hemocyte autonomous
effects of EcR and InR, we induced embryonic hemocyte death by hemocyte-specific expres-
sion of dominant-negative PvrAC [12], and examined the effects of co-expressed dominant-
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Fig 4. Role of EcR and InR in embryonic hemocytes in vivo. (A) In vivo rescue experiment, combining Pvr1 mutant or hemocyte specific expression of
UAS-PvrAC with various UAS-transgenes. Inhibition of EcR signaling by dominant-negative EcR (EcRA dn or ECRB dn) rescues hemocyte numbers in Pvr!
mutant embryos, while co-expression of dominant-negative InR enhances the Pvr’ phenotype. Embryonic hemocyte numbers in embryos of the indicated
genetic combinations. Hemocytes were marked by nuclear 3-Gal driven by srpHemoGAL4; total hemocytes of individual stage 16 embryos were counted.
For full genotype, see Methods. (B-F) Confocal images of representative embryos. (G) Summary model of Pvr Suppressors and Pvr Enhancers as shown in
B-F. In Pvr1 mutants, apoptotic hemocytes are phagocytosed by remaining, viable hemocytes, which increase in size [12]. Additional lack of a Pvr Enhancer
aggravates the phenotype, while lack of a Pvr Suppressor rescues hemocyte death.

doi:10.1371/journal.pgen.1005056.9004
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negative versions of EcR or InR. Again, we found that dominant-negative EcR rescued apopto-
tic loss of hemocytes, while dominant-negative InR exacerbated the cell death phenotype

(Fig. 4). Expression of the transgenes in the wild type background had no significant effects
(Fig. 4A).

Intrigued by the mild increase of hemocyte numbers upon overexpression of dominant-
negative EcRdn (Fig. 4A), we asked whether blocking EcR signaling alone would have a positive
effect on hemocyte numbers at a later point during development, for example at the transition
from the embryo to the larval stage. A time course of total hemocyte counts in live animals il-
lustrates that, compared to stage 16 embryos, hemocyte numbers in young 1* instar larvae de-
cline to about 60%, suggesting a putative connection with the embryonic ecdysone peak in
mid-embryogenesis [61] (S7 Fig). However, comparing live hemocyte counts of controls to ani-
mals with hemocyte-specific expression of EcRdn, we did not see a significant rescue in the
total number of hemocytes, despite a mild increase in EcRdn overexpressing larvae (S7 Fig).

Taken together, our findings suggest that EcR signaling accounts for a basic level of pro-
death signaling in embryonic hemocytes, which however is revealed only under sensitized con-
ditions such as Pvr loss of function. Conversely, signaling by InR contributes to the trophic sur-
vival of embryonic hemocytes, which acts redundantly with Pvr signaling, and therefore again
is only evident in conjunction with loss of Pvr signaling (Fig. 4G).

Signaling networks downstream of Pvr, InR and EcR

Based on our findings, we sought to further dissect the relationship between Pvr, InR and EcR
signaling. First, we asked whether signaling by the EcR complex acts epistatically or in parallel
with RTK-triggered signaling pathways such as Akt/Tor. When comparing the effects of silenc-
ing of the EcR/Usp and Akt/Tor pathways separately and in combination, we found that simul-
taneous knockdown of genes from both pathways resulted in increased cell number rescue (e.g.
EcR and Pten), which in many cases was significant when compared to knockdown of two
genes from the same pathway (i.e. EcR and usp, or Pten and gig). This suggested a parallel, rath-
er than epistatic relationship (Fig. 5A). Biochemically, insulin stimulation of Pvr deficient cells
restored, albeit to distinctive levels, phosphorylation of downstream signaling mediators of the
Akt/Tor and Mek/Erk pathways, while EcR knockdown did not show such effects (Fig. 5B).
This suggested similar but not identical signaling profiles for the RTKs Pvr and InR, and dis-
tinct mechanisms for the EcR complex.

To compare the signaling profiles of Pvr, InR and EcR in a more systematic manner, we
chose a phosphoproteomics approach. We utilized mass spectrometry and an isobaric labeling
strategy that enables multiplexing and relative quantification between samples [62,63]. For this
analysis, we surveyed the phosphoproteome by formally comparing conditions of (1) ‘high Pvr’
signaling (+ control dsRNA; taking advantage of the high endocrine Pvr activity in Kc cells);
(2) low Pvr’ signaling (+ Pvr dsRNA); (3) ‘high InR’ signaling (+ insulin, to stimulate endoge-
nous InR in Kc cells); (4) ‘low InR’ signaling (+ control dsRNA; taking advantage of the low
InR activity in Kc cells under standard culture conditions presumably due to low levels of dIlp
expression [29], see also Fig. 5B); (5) ‘high EcR’ (endogenous EcR in Kc cells); and (6) low
EcR’ (+ EcR dsRNA).

First, we assessed which phosphoproteins were up- or downregulated in the rescue of Pyr si-
lenced Kc cells. We surveyed the phosphoproteome under conditions of high and low Pvr ac-
tivity (Fig. 6A and B, respectively), and analyzed separately for the two conditions the effects of
EcR silencing or InR activation, assessing biological duplicates (S4 Table and S5 Table). Under
‘high Pvr’ conditions, approximately 10% of the detected phosphorylation was altered more
than 1.5-fold under conditions of InR stimulation, which we refer to as the ‘InR-specific set’
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Fig 5. Crosstalk between RTK and EcR signaling. (A) Effects of insulin stimulation or gene silencing on the cell number of Pvr silenced Kc cells. Note
additive effects of knockdown of combinations of genes from the Akt and EcR pathways in the rescue of Pvr deficient cell numbers (bars above red or blue
lines, respectively). In all cases, total amounts of dsRNA were adjusted by addition of GFP control dsRNA. (B) Immunoblot for phosphorylated signaling
mediators in Pvr silenced Kc cells under the indicated stimulation/knockdown conditions. Note that insulin stimulation rescues Akt and S6K phosphorylation
in the Pvr RNAi background, while EcR RNAi and usp RNAI have no effect.

doi:10.1371/journal.pgen.1005056.9005

(Fig. 6A and S4 Table). This percentage nearly doubled under low Pvr’ conditions (Fig. 6B and
S5 Table). Although some of these phosphorylations could be attributed to the fact the InR
may phosphorylate Pvr targets in the absence of Pvr, this finding also suggested the emergence
of new sets of up and down-regulated phosphosites that were not observed upon InR activation
under ‘high Pvr’ conditions (below).

Secondly, we sought to directly measure the degree to which phosphosites were altered by
InR under conditions of ‘high’ versus ‘low’ Pvr signaling, hypothesizing a ‘sensitization’ of InR
signaling by the absence of Pvr. We repeated our phosphoproteomic analysis, this time directly
comparing the six experimental signaling conditions among each other (Fig. 7A and S6 Table).
While nearly three-quarters of the ‘InR-specific set” of phosphopeptides remained upregulated
following InR activation in the absence of Pvr, the ‘InR-specific set’ showed qualitative differ-
ences in the absence and presence of Pvr signaling. For instance, InR stimulation elevated levels
of phosphorylation of fifteen phosphoproteins specifically under low Pvr’ activity as compared
to ‘high Pvr’ signaling. These included Chromosome-associated protein (Cap), lava lamp (lva),
Enhancer of decapping 3 (Edc3), Bicaudal D (BicD), lethal(2)03709, eukaryotic translation Ini-
tiation Factor 2. (eIF-2 o) and several uncharacterized gene products. InR activation restored
phosphorylation to nearly all sites downregulated in Pvr deficient cells, (Fig. 7C). These phos-
phorylations likely account for the ability of insulin to rescue Pvr deficiency. EcR knockdown,
meanwhile, had very little effect on the phosphoproteome, both in low and high Pvr conditions
(Fig. 6A, B), despite efficient knockdown (S8 Fig). Similar findings were made from the com-
parative analysis of all six experimental conditions (Fig. 7A, B). This is consistent with an
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Fig 6. Phosphoproteome survey of Kc cells under Pvr rescue conditions. (A) From left to right the conditions for Kc cells subjected to phosphopeptide
enrichment and mass spectrometry were ‘high PVR, low InR’, ‘high PVR, low EcR, and ‘high PVR, high InR’. Of 3380 unique phosphosites identified by mass
spectrometry in both replicates, 144 phosphosites were upregulated on average >1.5-fold (red) in response to insulin while 176 phosphosites were
downregulated on average >1.5-fold (green). Knockdown of EcR induced more than 1.5-fold up- and down-regulation of 6 and 2 phosphosites, respectively.
(B) From left to right the conditions for Kc cells subjected to phosphopeptide enrichment and mass spectrometry were ‘low PVR, low InR’, ‘low PVR, low EcR,
and ‘low PVR, high InR’. Of 2397 unique phosphosites identified in both replicates, 237 phosphosites were upregulated on average >1.5-fold in response to
insulin while 222 phosphosites were downregulated on average >1.5-fold in Pvr RNAi cells. EcR knockdown induced more than 1.5-fold up- and down-
regulation of 8 and 9 phosphosites, respectively in PVR RNAi cells.

doi:10.1371/journal.pgen.1005056.9006

alternative mode of action, such as the transcriptional modulation of EcR/Usp target genes (see
Fig. 3G).

Lastly, we identified a pool of common phosphoproteins induced by both Pvr and InR,
which comprise signaling mediators for common functions in cell survival and proliferation.
At the same time, we distinguished Pvr- or InR-associated targets that may mediate receptor-
specific functions. A common set of phosphorylation targets for Pvr and InR, either direct or
indirect, can be inferred from the reciprocal effects of Pvr knockdown and InR stimulation,
comparing ‘low Pvr’ and ‘high InR’ conditions (Fig. 7B; 153 phosphosites: S7 Table). Examples
include phosphorylation of Structure specific recognition protein (Ssrp), La related protein
(Larp), eukaryotic translation initiation factor 4G (eIF4G), Lamin, NAT1, Claspin, Gartenz-
werg (Garz), Nedd4, Nopp140, Lké, Yorkie (Yki), Stat92E, and Moleskin (Msk). Many of
these common signaling mediators function in cell survival and cell proliferation. For example,
the transcription factor Yki coordinates cell proliferation and apoptosis by directing the ex-
pression of cell cycle and cell death regulators [64]. Stat92E loss-of-function has been reported
to inhibit hemocyte proliferation [65,66], while the importin Msk localizes MAP kinase to the
nucleus to promote cell proliferation and survival [67]. We found enrichment for the regula-
tion of phosphorylation of components of specific complexes by both InR and Pvr, including
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Fig 7. Relative phosphopeptide quantitation comparing ‘low Pvr’ and ‘high Pvr’ conditions. (A) From left to right conditions the conditions for Kc cells
subjected to phosphopeptide enrichment and mass spectrometry were: ‘low Pvr, low InR’, ‘low Pvr, low EcR’, ‘low Pvr, high InR’, ‘high Pvr, low InR’, ‘high Pvr,
low EcR’ and ‘high Pvr, high InR’. Of 3815 unique phosphosites identified, 176 phosphosites were upregulated >1.5-fold (red) in response to insulin
treatment both in ‘low Pvr’ and ‘high Pvr conditions’ while 83 phosphosites were commonly downregulated >1.5-fold (green). EcR RNAi resulted in only one
phosphosite upregulated >1.5-fold in both ‘low Pvr’ and ‘high Pvr’ conditions while two phosphosites were downregulated >1.5-fold in both conditions. More
phosphosites were found changing in ‘low Pvr’ versus ‘high Pvr’ conditions (solid versus dashed lines), both in response to insulin and EcR RNAi (black
versus grey lines). (B) Dendogram of identified phosphoproteome from A, normalized to the median change for each phosphopeptide identified and clustered
using k-means analysis (K = 10 gene clusters) and Euclidean distance as a similarity measure. (C) Insulin stimulation restores phosphorylation to nearly all of
339 phosphosites downregulated >1.5-fold in ‘low Pvr’ conditions relative to ‘high Pvr’ conditions (S6 Table: ‘Pvr-specific set’). (D) Complexes enriched for
components (colored nodes) for which phosphorylation is targeted by both Pvr and InR. (E) Complexes enriched for components (colored nodes) for which
phosphorylation is downregulated when Pvr and InR are active. (F) Complexes enriched for components (colored nodes) specifically regulated by Pvr.

(G) Complexes enriched for components (colored nodes) for which phosphophorylation is specifically regulated by InR.

doi:10.1371/journal.pgen.1005056.g007

the Chs5p/Arfl-binding protein complex, the chromatin remodeling FACT complex, the
translation initiation factor 2 complex, the cohesion-Sa complex, TRAPP complex and splicing
associated factor complex (Fig. 7D, E). While we do not expect that all components of an indi-
vidual complex require an alteration in phosphorylation in order for complex activity to
change, more confidence for implication of that complex downstream of Pvr or InR is gleaned
from multiple components exhibiting altered phosphorylation. As such, we expect that these
complexes play key roles downstream of both InR and Pvr.

To distinguish Pvr- or InR-specific targets that may mediate receptor-specific functions we
compared phosphoproteomes under ‘high Pvr, low InR” and ‘low Pvr, high InR’ conditions (S8
Table). Among the Pvr-specific phosphorylations, we identified phosphoproteins involved in
cell migration, cytoskeleton, and regulation of cell shape such as CIN85 and CD2AP ortholog
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(Cindr), Tenascin major (Ten-m), Vacuolar protein sorting 4 (Vps4), Rab7, Rho GTPase acti-
vating protein at 15B (RhoGAP15B), and Sprouty (Sty). Cindr is a recognized component of
the CIN85 complex, one of three complexes for which multiple components exhibited a depen-
dence on Pvr for specific phosphorylation (Fig. 7F). With respect to InR-specific phosphoryla-
tions, we detected phosphoproteins associated with the Gene Ontology Consortium terms
growth regulation (i.e. Gp150, Foxo, L, Chico), glycogen metabolism (i.e. Glycogen Synthase),
and the innate immune response (i.e. G protein-coupled receptor kinase interacting ArfGAP
and Mustard). These differential phosphorylations likely provide receptor specificity and func-
tion to modulate the activity of specific complexes such as those over-represented in terms of
the number of components modulated by InR activity (Fig. 7G).

Discussion

Here, we present a genome- and proteome-wide survey in Drosophila to identify signaling net-
works and cellular regulators that control cell survival and cell number. Starting from a ge-
nome-wide RNAi screen for modifiers of cell number under Pvr sensitized conditions, we
established a new proapoptotic role for the EcR complex, and an anti-apoptotic function for
InR, in the balance of blood cell number in the Drosophila embryo. Phosphoproteomic analyses
of Pvr deficient cells under low and high InR signaling states enabled the identification of com-
mon Pvr and InR phosphorylation targets regulating cell survival, and receptor-specific phos-
phorylation targets that mediate unique functions of Pvr and InR (model, Fig. 8). Our study
further highlights the ability of signaling receptors to modulate their targets depending on cel-
lular context, in our case, specifically based on the activity of other RTKs. These observations
are important in light of mechanisms of acquired RTK inhibitor resistance that were recently
described [68].
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Fig 8. Model of Pvr and InR impact on cell survival control. Signaling scheme of Pvr, and its Enhancer InR and Suppressors EcR/Usp, which were
identified by RNAi screening. Pvr and InR trigger the phosphorylation of many common targets of redundant survival pathways (see also Fig. 1F). In addition,
each receptor generates specific outputs as a consequence of unique substrate targeting. Enriched Gene Ontology Consortium terms are indicated. EcR
and Usp function through a different mode that is largely independent of phosphorylation and Pvr signaling, but rather involves transcriptional regulation of
target genes. Pvr Suppressors and Enhancers that affect Pvr downstream pathways are illustrated.
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doi:10.1371/journal.pgen.1005056.g008
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A sensitized screen to identify novel regulators of cell number

Previously, we demonstrated that Pvr mediates cell survival in the Drosophila embryonic he-
matopoietic system and in Drosophila Kc cells in culture [12]. Similar roles for Pvr in other cell
populations such as glia were subsequently reported [69]. Here, we find that Pvr also contrib-
utes to the proliferation of Kc cells, which is revealed when Pvr-dependent cell death is sup-
pressed. These Pvr functions are well conserved with mammalian systems, where PDGF/VEGF
Receptors mediate cell survival and proliferation during normal development [70,71] and in
pathologies such as leukemias and other forms of cancer [26,72,73].

Our findings encompassing the role of Pvr in the activation of the Mek/Erk and Akt/Tor
pathways are consistent with previous reports of Pvr-dependent phosphorylation of Erk
[21,23], the activation of the TOR1 Complex and Erk by Pvr [14], and the physical interaction
of Pvr with PVRAP, Grb2, Shc, and the regulatory subunit of PI3K in cell culture [14,74]. Since
our screen was designed to eliminate general regulators of cell number and instead focus on
those genes that show differential effects under sensitized conditions, it predominantly revealed
genes with tumor suppressor-like activities (Pvr Suppressors), many of which were not de-
tected in conventional RNAi screens for cell proliferation or survival previously [17,75-78].
Several of the identified Pvr Enhancers (5/14) and half of the Pvr Suppressors scored as hits in
other genome-wide RNAi screens examining RTK signaling, specifically InR and EGEFR signal-
ing using the same screening platform and dsRNA libraries [79]; see S3 Table for specific
overlap).

Many genes identified in the screen regulate redundant pro-survival pathways downstream
of Pvr (Fig. 8), as was predicted by our initial screening hypothesis (Fig. 1F), and which is also
supported by others [14]. However, some regulators identified in the screen instead act in path-
ways parallel to Pvr signaling, as we demonstrated for InR and EcR signaling. Among the
RNAI screen hits, we distinguished three major classes of modifiers. First, we identified a large
group of ‘Upstream Genes’ that specifically affect cell number only in signaling competent, but
not Pvr depleted cells. Among these, we found a large number of ribosomal protein genes. In-
terestingly, a recent Drosophila in vivo study identified ribosomal protein RpS8 as functional
upstream regulator of Pvr in hemocytes of the lymph gland, proposing it may exert its function
by interaction with Bip1 (bric & brac interacting protein 1), which shows similar phenotypes
[16]. While our screen did not identify Bipl, it revealed RpS8 as putative Pvr ‘Upstream Gene’.
Ribosomal subunits may promote Pvr expression also as part of the general translation ma-
chinery, or may play more specialized roles in translation regulation, according to previous re-
ports on target-specific ribosomal activities that may influence the cellular signaling makeup in
development and tumorigenesis [80-82]

Second, inherent to our system, our screen yielded relatively few Pvr Enhancers. From this
group we chose InR for verification analysis by in vivo genetics, which we further comple-
mented with a phosphoproteomic survey that illuminated synergy between Pvr and InR. Anal-
ogous synergistic relationships between InR with other RTKs have been reported in Drosophila
development [69,83,84], and vertebrate signaling [85]. The specificity of redundant RTK sig-
naling pathways is of major interest is the fields of cell signaling and cancer research and sub-
ject of ongoing intense study [68,86].

Third, the screen yielded a group of Pvr Suppressors, which function as tumor suppressor-
like genes whose loss rescues cell survival under sensitized conditions. This group contains all
negative regulators of the Akt/Tor pathway, many of which are known tumor suppressors in
mammalian systems [39-41], and several negative regulators of the Mek/Erk pathway such as
mts and wdb, encoding for components of the PP2a complex [42,43], and Mkp3, which encodes
for a phosphatase known to negatively regulate Erk [44]. As expected, several genes identified
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in the Pvr modifier screen also scored in previous screens for signaling mediators of the Pvr,
Akt/Tor and RTK/Erk pathways [14,83,87]. The screen also revealed novel, or only recently
characterized, genes. CG6182 is an ortholog of the mammalian TBC7, that interacts physically
with Tscl [88]; GekIII is a counterpart of mammalian Serine Threonine Kinase 25 (STK25),
also known as SOK1, that localizes to the Golgi [89] and induces cell death upon overexpres-
sion in mammalian cell culture [90]. Some of the identified genes have been characterized in
Drosophila, yet no role in cell number control in the embryo has been described. For example,
we identified multiple members of the Brahma SWI2/SNF2 family ATPase chromatin-remod-
eling complex [46,47], with osa and dalao scoring as Pvr Suppressors, and Brahma associated
protein 60kD (Bap60) and moira (mor) scoring in mixed categories. Two of the strongest hits
among the Pyr Suppressors were genes encoding the nuclear hormone receptors EcR and Usp
[27,45], which we followed up with subsequent analyses.

Role of the ECR complex in embryonic cell death

EcR and Usp have previously been studied for their roles in proliferation, differentiation and
cell death during larval molting and metamorphosis [50,61,91]. In Kc cells, the EcR/Usp ligand
ecdysone has been known to arrest the cell cycle and trigger a cell differentiation program [52-
54]. However, neither in the embryo nor in Kc cells has ecdysone signaling been previously as-
sociated with cell death [51,92]. Here, we describe a role for ecdysone signaling in embryonic
cell death, a function revealed only under sensitized conditions or when directly stimulating
EcR pathway activity. When treating Kc cells with 20E, we find that the EcR targets E93 and
rpr are transcriptionally upregulated, consistent with previous reports describing these genes as
transcriptional targets of EcR [93]. E93 and Rpr drive apoptosis [57,94-96] and are required
for ecdysone-induced death of the larval midgut and salivary glands during metamorphosis
and in the larval cell line 1(2)mbn [56,57,97-100]. As for the mechanism of cell death rescue by
EcR silencing, we were unable to detected measurable levels of Halloween gene expression,
which is required for biosynthetic maturation of 20E [101]. We therefore propose that Kc cul-
tures produce low levels of 20E through low-level expression of Halloween genes, or the EcR
complex may have residual pro-death functions even in the absence of ligand. Previous publi-
cations have suggested that the unligated EcR complex has an active role and can bind to ecdy-
sone response elements [102,103].

Vertebrate counterparts of EcR and Usp are the liver X receptors (LXRs), and retinoid X re-
ceptor (RXR), respectively [104,105]. RXR plays central roles in cell proliferation, apoptosis,
and differentiation [106-108] during development and in pathologies such as cancer and meta-
bolic disease [109,110]. Lack of activation of the RXR/Retinoic acid receptor (RAR) pathways
causes Acute Promyelocytic Leukemia (APL) and other malignancies due to impairments in
cell differentiation and increased cell survival [109,111,112] and treatment with synthetic reti-
noids or rexinoids has proven promising in reverting malignant phenotypes [109,111]. Inter-
estingly, dependence on additional anti-apoptotic pathways has been reported in RxR-
dependent APL. In particular, Akt/Tor signaling contributes to the increased cell survival in
APL, and, consequently, dual therapy with PI3K inhibitors and retinoids has shown great ther-
apeutic promise [113].

Signaling by InR and the EcR complex

Drosophila InR and Akt/TOR signaling were recently reported in several studies for their
multifaceted roles in the regulation of lymph gland hemocytes, an independent blood cell
lineage in Drosophila [114-116]. Drosophila InR further promotes the trophic survival of
germline stem cells in the Drosophila ovary [117], which relies on its downstream mediator
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Tor [118]. Besides this, Drosophila InR is known mostly for its role in cell growth and regula-
tion of body and organ size [119]. In contrast, the related mammalian Insulin-like Growth
Factors 1 and 2 (IGF1 and IGF2) play important roles in the trophic survival of various cell
types [120]. Our study now demonstrates that Drosophila InR also exerts trophic function in
embryonic blood cells, which is revealed once redundant receptor activity such as Pvr activity
is suppressed.

Several mammalian orthologs of InR phosphorylation targets uncovered from our phos-
phoproteomic analyses have been previously reported to be regulated by insulin, such as Ssrp,
Larp, eIF4G, Lamin, NAT1, Claspin, Garz, Nedd4, Nopp140, Yki and Lk6 [121,122]. These
phosphoproteins are also regulated by Pvr and contribute to the roster of common RTK tar-
gets that likely account for Pvr/InR-induced cell survival. An additional example of a com-
monly targeted phosphosite is the activating phosphorylation of Stat92E [123], a proposed
target of the insulin receptor [124]. These examples highlight the success of our phosphopro-
teomic approach to uncover bona fide targets shared by InR and PVR. The approach also un-
veiled novel downstream effectors. For example, the requirement of Pvr for Ssrp
phosphorylation hints to a relationship between Pvr and the chromatin remodeling FACT
complex, a heterodimer comprised of Ssrp and Dre4 [125]. This hypothesis is reinforced by 1)
the suppression of Pyr deficient cell proliferation by dre4 knockdown; and 2) a reported two-
hybrid interaction between Pvr and Spt6 [126], a component of an elongation complex that in-
cludes FACT [127]. The possibility that FACT functions downstream of these RTKs to regu-
late transcriptional initiation and elongation as a cell survival mechanism will be an
interesting area of future investigation.

Our phosphoproteomics experiments additionally uncovered InR-specific phosphoryla-
tions: e.g. phosphosites on Foxo, Unkempt (Unk), Chico, Tscl, Spaghetti (Spag), L, Ajuba
(Jub), and Git. Notably, many of these proteins were identified by affinity purification and
mass spectrometry as components of an InR/Tor protein interaction network [128], supporting
our proposition that indeed these phosphoproteins serve InR-specific functions. Remarkably,
four of the thirty high confidence Pvr Suppressors and two of the fourteen high confidence Pvr
Enhancers exhibited altered phosphorylation specifically under InR activation indicating these
localized phosphorylation events may be critical for the rescue of Pvr deficient cells provided
by InR stimulation.

Our analysis identified very few EcR-dependent phosphoproteins, however, we cannot rule
out that these few may indeed regulate cell number. For example, phosphorylation of the me-
thionine sulfoxide reductase Ecdysone-induced protein 28/29kD (Eip71CD) was upregulated
by EcR knockdown. Eip71CD confers protection to oxidative stress, increases cell size and
number, and promotes longevity [129,130]. Additionally, phosphorylation of the diacylglycerol
O-acyltransferase Midway (Mdy) was upregulated upon EcR knockdown. mdy mutant egg
chambers exhibit premature nurse cell death and degeneration during mid-oogenesis [131]
comparable to EcR and Eip75B germline clones [132]. We observed an upregulation of phos-
phorylated Transforming acidic coiled-coil (Tacc) in Pyr deficient cells subjected to either EcR
knockdown. Vertebrate TACC proteins interact with RxRP to regulate specific gene expression
[133]. Phosphorylation could potentially influence Tacc interaction with Usp, the Drosophila
ortholog of RxR, and consequently impact Usp-dependent gene expression, thereby permitting
cell survival. We cannot exclude the possibility that, due to incomplete coverage, our phospho-
proteomics analyses may have failed to capture critical phosphorylation changes induced by
EcR knockdown that account for Pvr deficient cell survival. Our analyses did, however, gener-
ate a list of candidates for future study and highlight the substantially different responses by in-
sulin and EcR knockdown to rescue Pvr loss.
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Signaling networks in mammalian development and disease

The dual dependence of Drosophila Kc cells and embryonic hemocytes on the Akt/TOR and
Mek/Erk pathways (this study and [12,14] echoes the dependence of many mammalian cells,
in particular tumor cells, on these two signaling pathways. In addition to concomitant activa-
tion by upstream receptors, Akt/Tor and Mek/Erk signaling further show a substantial degree
of crosstalk between each other [134]. Dual inhibition of these two pathways has therefore be-
come a promising approach in targeted cancer therapies [135]. However, many molecularly
targeted approaches remain challenging due to the plasticity of signaling, the involvement of
additional undefined redundant signaling pathways, and the variation of signaling networks
downstream of even closely related receptors [68,135]. Findings from the Drosophila model
provide insight into the pools of common and unique signaling targets of the related RTKs Pvr
and InR. Further, this study suggests that the qualitative signaling specificity of receptors can
be switched in response to the signaling status of the cell. This notion may be of wide-reaching
consequences for many cellular processes, and requires careful consideration when aiming for
the experimental or therapeutic manipulation of signaling systems.

Materials and Methods
Fly stocks and crosses

Fly lines used were: Pvrl/CyO [12], srpHemoGALA4 [12], Pxn-GAL4 [136], UAS-PvrAC [12],
UAS-p35 [30], UAS-srcEGFP (E. Spana), UAS-lacZnls (E. Spana), UAS-mCD8::GFP [137],
UAS-Stinger [138], UAS-EcRA, UAS-EcRBI, UAS-EcRB2 [57], UAS-EcRB1 W650A (domi-
nant-negative) [59] and UAS-EcR A W650A (dominant-negative) [60], UAS-InR-dn [139].

For in vivo quantification of hemocytes in Drosophila embryos, the srp-Hemo-GAL4 driver
was used to express UAS-lacZnls and UAS-srcEGFP in hemocytes. Genotypes of Pvr’ mutant
rescue/enhancement experiments were: Pvr',UAS-srcEGFP/ Pvr',srpHemoGAL4; UAS-p35/
UAS-lacZnls and Pvr!UAS-EcR (A or B1) W650A or UAS-InR-dn/Pvr ,srpHemoGAL4; UAS-
mCD8::GFP/UAS-lacZnls. Genotype for the alternative rescue/enhancement of Pvr dominant-
negative expressing hemocytes were: srpHemoGAL4, UAS-srcEGFP/+; UAS-PvrAC, UAS-
EcRA W650A or UAS-InR-dn/ UAS-lacZnls.

Embryo staining, stimulation, and microscopy

Embryos were collected on apple juice agar plates and fixed and stained as described previously
[12]. Antibodies used were goat anti-GFP (1:1500) (Molecular Probes) and mouse anti-B-Gal
(1:750) (Promega), and Alexa Fluor secondary antibodies (Invitrogen) Imaging was done on
Leica DMI 4000B and Leica SP5 microscopes. Hemocyte counts were conducted under fluores-
cent microscopy at 40X, assessing 10 independent embryos per genotype and stage. Standard
deviations and p values by Student’s t-test were calculated.

Live hemocyte counting

To examine hemocyte numbers at the embryo-larva transition, hemocytes were marked by
Pxn-GAL4 driven expression of UAS-Stinger. The transgenic driver UAS-Stinger; Pxn-GAL4
was crossed to w1118 (control), or UAS-EcRA dn, respectively. Dechorionated embryos or lar-
vae from 2 hour timed collections were mounted under glass slides and subjected to visual/
manual counting under a fluorescence microscope. At least ten embryos or larvae per time
point and genotype were assessed. Standard deviations and p values by Student’s t-test were
calculated.
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Cell maintenance and stimulation

Kc167 cells [140], here labeled Kc, were cultured in Schneider’s Drosophila Medium (Millipore,
Gibco) supplemented with 10% Fetal Bovine Serum (FBS) and 1000 units/ml Penicillin and
1000mcg/ml Streptomycin. Insulin was supplemented to a final concentration of 5 pg/ml for
InR stimulation experiments.

20E experiments: 20-Hydroxyecdysone (Sigma-Aldrich), 20E, was dissolved in ethanol to
make a 5mg/ml stock. A subsequent stock of 1pug/ml stock was made by diluting in water.
1x10° cells were seeded into each well of a 24 well plate and 20E was added to achieve the indi-
cated final concentrations.

p35 stable cell line

All cell experiments were based on Kc167 cells, in short Kc. Effectene Transfection Reagent
(Qiagen) was utilized for transfection. Kc cells were co-transfected with driver Actin-GAL4,
UAS-puromycin, UAS-GFP and UAS-p35 plasmid constructs. Three days after transfection,
cells were selected with puromycin 10ug/ml. After 2 weeks, surviving cells were harvested and
sorted by Fluorescence-activated cell sorting (FACS) to isolate the highest 20 percentile of
GFP-expressing cells. To further select cells that are resistant to apoptosis, thread RNAi knock-
down was used to eliminate cells with weak resistance to caspase-dependent apoptosis. The
surviving cells were expanded for experimental use. The presence of p35 transgene in the p35
stable cell pool was confirmed by PCR verification.

Cell-based RNAI

RNAi knockdown was performed as described previously [141]. Briefly, Kc167 cells were re-

suspended and diluted in serum-free medium before seeding. dsRNAs targeting each specific
gene were added and incubated for 45 minutes before supplementing with complete medium
with FBS to adjust to a final concentration of 10% FBS.

Genome-wide RNAI screening

We screened a set of 62 384-well plates that were pre-arrayed with dsRNAs, corresponding to
22,914 distinct amplicons based on Flybase release 5.51 of the Drosophila genome correspond-
ing to 13,777 unique genes [31], and 7463 Sanger predictions [142] (DRSC). To determine dif-
ferential effects between Pvr silenced and control cells, we screened each plate under two
conditions, dsSRNA-mediated knockdown of Pvr, or knockdown of a control (GFP). All experi-
ments were performed in duplicate. Each well contained 0.25ug of pre-arrayed dsRNA. Before
seeding, Kc cell suspensions were pre-mixed with Pvr or control (GFP) dsRNAs in batch, corre-
sponding to a final concentration of 0.3ug per well. Cells were seeded at a density of 7,000 cells/
well and incubated for 4 days. CellTiter-Glo assay (Promega) was performed according to the
instructions of the manufacturer, and luminescence was read using Analyst GT or SpectraMax
plate readers (Molecular Devices). Liquid handling was performed using WellMate (Matrix),
MicroFill (BioTek), or MultiDrop (Thermo), high-throughput dispensers. Z scores [z = (y-1)/0]
were calculated as follows: u = Mean of readings from controls wells (i.e. wells without pre-ar-
rayed candidate dsRNAs), o = Standard deviation from readings of the control wells. y = Read-
ing of candidate gene well. Z score for Pvr knockdown condition (Z[Pvr]) and for control
knockdown condition (Z[GFP]) were generated and the differential effects in Pvr knockdown
condition and control knockdown were calculated by the difference of each Z scores (i.e.

Zdiff = Z[Pyr]- Z[GFP]). Cluster analysis of primary screen data was performed of amplicons
scoring ZDiff> = 2.0 and ZDiff< = -2.0, using Z[Pvr], Z[ GFP], and Zdiff values for each
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amplicon. Analysis included hierarchical clustering by centered correlation, and complete link-
age, and results were displayed using TreeView [143]. For verification screening, genes were se-
lected at cutoffs of ZDift> = 2.2 and ZDiff< = -2.2, and one or two amplicons per gene, non-
overlapping with the primary screen amplicons, and devoid of 19bp off-target overlaps, were
utilized (DRSC). Secondary screening involved differential screening of Pvr RNAi and GFP
RNA:I cells as outlined above. Assays were performed in replicate and repeated in two indepen-
dent duplicates. Final, ‘high confidence’ Pvr modifiers were determined by calculation of final
average ZDiff scores determined from the averaged ZDiff scores of all amplicons targeting spe-
cific genes that were evaluated in both primary and secondary screening. Regarding the error
rate of the screen, we generated false positive and false negative rates as follows: To evaluate
false positives we 1) assembled a list of 355 protein-coding genes that are not expressed across
Drosophila tissue/stage/cell lines based on both modEncode RNA-Seq data as well as FlyAtlas
data; ii) compared this list with genes scoring in the primary screen (there is only 1 gene over-
lapping and the relevant amplicon has >5 predicted off targets); and iii) estimated a false posi-
tive rate: 1/355 = <1%. To evaluate false negatives we i) assembled a list of 38 high confidence
genes based on secondary screening hits, which are the genes that scored with at least 2 indepen-
dent amplicons and each amplicon was consistently scored among replicates; ii) identified all
amplicons relevant to these 38 genes from the genome library and found 80 of them. 41 scored
in the primary screen while 39 failed to score; and iii) used these numbers to calculate a false
negative rate: 39/80 = 49%.

Cell counting, EAU and TUNEL assays

To obtain cell counts, 1x10° cells were seeded into each well of a 24-well plate followed by treat-
ment with dsRNAs or 20E. 3.3ug of dsRNA targeting each specific gene knockdown was
added. After culturing for the indicated period of time, cells were re-suspended and diluted 1:1
with 0.4% Trypan Blue. Numbers of viable/dead cells were assessed by hemocytometer count-
ing based on Trypan Blue exclusion/staining.

For EdU and TUNEL assays, 20,000 Kc cells were seeded into each well of 96-well black
clear bottom plate and immediately treated with dsRNAs or 20E. 0.825ug of dsSRNA was used
to target each specific gene knockdown.

To assess cell proliferation, cells were incubated for 4 hours with 10uM of Click-iT EdU
(Invitrogen) one or several days after the dSRNAs or 20E treatment. The Click-iT EAU cell pro-
liferation assay was conducted according to manufacturer's instructions.

For assessing cell death, cells were processed by TUNEL assay according to manufacturer's
instructions (Invitrogen).

Stained cells were counted visually/manually and by Image] automated cell quantification.
In brief, for Image] analysis, still images were converted to 8 bit images and cells were selected
by setting a threshold against the background. Highlighted cells were then counted by the ‘Ana-
lyze Particles’ function. At least three still images for each sample were taken at random sites
using a 40X objective. Percentages of EdU or TUNEL positive cells were calculated as follows:
(# of EdU or TUNEL positive cells/ total # of cells) * 100. Cell culture figures show compila-
tions of three independent biological replicate experiments. Error bars indicate standard devia-
tion. Student’s t-test as indicated. * for p < 0.05; ** for p < 0.01; *** for p < 0.001; NS for
not significant.

dsRNAs design and generation

In most cases, dsSRNA amplicon sequences were selected by the Drosophila RNAi Screening
Center (DRSC), as indicated by DRSC amplicon numbers. Primers used for generating the
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amplicon template contained a 5' T7 RNA polymerase-binding site (TAATACGACTCACTA-
TAGG) following by the amplicon specific sequences. dsSRNAs were generated by in vitro tran-
scription using Megascript T7 transcription kit (Ambion). dsSRNAs were purified with a
RNeasy Mini Kit (Qiagen) and product size confirmed by agarose gel electrophoresis. dssSRNA
concentrations were measured with a Nanodrop 2000C spectrophotometer (Thermo
Scientific).

Real time PCR

Total RNA was extracted using a RNeasy mini kit (Qiagen), according to manufacturer's in-
structions. Total purified RNA were measured with a Nanodrop 2000C spectrophotometer
(Thermo Scientific). 1ug—O0.1ug of purified RNA was reversed transcribed into cDNA using an
iScript cDNA synthesis kit (Biorad). Real time PCR reactions were carried out using iQ SYBR
Green Supermix (Bio-Rad) on a Bio-Rad CFX96 Real Time System and gene expression levels
were analyzed with CFX Manager Software (Bio-Rad). Primers for real time PCR assays were
designed using web-based software ProbeFinder (Roche Applied Science Universal ProbeLi-
brary Assay Design Center) or by the author. Primer sequences for real-time PCR assessment
will be made available upon request.

Protein lysates and immunoblotting

Kc cells were lysed using Triton lysis buffer (50mM Tris-HCl (pH 7.5), 150mM NaCl, 1% Tri-
tion X-100, 30mM NaF) freshly supplemented with ImM Na;VO, and protease inhibitors
(Complete, Roche) and immunoblot analysis was performed as described previously [12]. Pri-
mary antibodies were obtained from Cell Signaling Technology except monoclonal anti-f-
tubulin (Sigma T5168), anti-Pvr [12], anti-EcR (Developmental Studies Hybridoma Bank,
DSHB) and anti-histone H3 (Abcam 39950); signal was detected by HRP conjugated secondary
antibodies (Amersham NA934V/NXA931 and Jackson ImmunoResearch 706-035-148)

and ECL.

Sample preparation for mass spectrometric analysis

Kc cells were serum starved for 1 hr, incubated with dsRNA for 30 minutes and then diluted ei-
ther in Schneider’s Drosophila Medium (Gibco) supplemented with Fetal Bovine Serum (FBS)
(final concentration of 10%), Penicillin (50 units/ml final concentration), and Streptomycin
(50 ug/ml final concentration), with or without insulin (5ug/ml final concentration). After two
days cells were lysed in: 8M urea, 75mM NaCl, 50mM Tris-HCI pH 8.2, ImM NaF, ImM B-
glycerophosphate, 1mM sodium orthovanadate, 10mM sodium pyrophosphate, ImM PMSEF,
EDTA-free Protease Inhibitor Cocktail Tablet (Roche). One milligram of protein from each
sample was reduced with 5mM dithiothreitol at 56°C for 25 minutes. Cysteines were alkylated
with 14mM iodoacetamide for 30 minutes at room temperature in the dark. Unreacted iodoa-
cetamide was quenched by incubation with additional dithiothreitol to 5mM for 15 minutes at
room temperature in the dark. Lysates were diluted 1:5 with 25mM Tris-HCI, pH 8.2 and
CaCl, added to 1mM. Digestion with 5ug sequencing grade trypsin (Promega) was overnight
at 37°C with agitation. Peptides were acidified with 10% trifluoroacetic acid and desalted using
Lcc Sep-Pak tC18 solid-phase extraction cartridges (Waters). Eluted peptides were lyophilized,
resuspended in 200mM Na-HEPES pH8.2, and labeled with TMT reagent (Thermo Scientific)
in anhydrous acetonitrile (2mg TMT reagent per sample) for 1 hour at room temperature.
TMT labeling was as follows:

Experiment 1. control dsRNA, biological replicate #1: 126 (high Pvr, low InR); control
dsRNA, biological replicate #2: 127 (high Pvr, low InR); control dsRNA + insulin, biological
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replicate #1: 128 (high Pvr, high InR); control dsRNA + insulin, biological replicate #2: 129
(high Pvr, high InR); control dsRNA + EcR dsRNA, biological replicate #1: 130 (high Pvr, low
EcR); control dsRNA + EcR dsRNA, biological replicate #2: 131 (high Pvr, low EcR).

Experiment 2. Pvr dsRNA + control dsRNA, biological replicate #1: 126 (low Pvr, low InR);
Pyr dsRNA + control dsRNA, biological replicate #2: 127 (low Pvr, low InR); Pvr dsSRNA +
control dsRNA + insulin, biological replicate #1: 128 (low Pvr, high InR); Pvr dsRNA + control
dsRNA + insulin, biological replicate #2: 129 (low Pvr, high InR); Pvr dsSRNA + EcR dsRNA,
biological replicate #1: 130 (low Pvr, low EcR); Pvr dsRNA + EcR dsRNA, biological replicate
#2:131 (low Pvr, low EcR).

Experiment 3. Pvr dsRNA + control dsRNA: 126 (low Pvr, low InR); Pvr dsRNA + control
dsRNA + insulin: 127 (low Pvr, high InR); Pvr dsRNA + EcR dsRNA: 128 (low Pvr, low EcR);
control dsRNA: 129 (high Pvr, low InR); control dsRNA + insulin: 130 (high Pvr, high InR);
control dsRNA + EcR dsRNA: 131 (high Pvr, low EcR).

Reactions were quenched by the addition of hydroxylamine to 0.3% and incubation at room
temperature for 15 min. Labeled peptides were combined, lyophilized, and stored at -80°C
until further processing. Samples were acidified with 10% trifluoroacetic acid and desalted
using a 3cc Sep-Pak tC18 solid-phase extraction cartridge (Waters). Phosphopeptides were en-
riched by strong cation exchange chromatography (SCX; [144]). Lyophilized peptides were re-
suspended in 400 ul SCX buffer A (7 mM KH2PO4, pH 2.65, 30% acetonitrile) and injected
onto a SCX column (Polysulfoethyl aspartamide, 9.4 mmx250mm, 5 uM particle size, 200 A
pore size, PolyLC). A gradient was developed over 35 min from 0% to 30% buffer B (7 mM
KH2PO4, pH 2.65, 30% acetonitrile, 350 mM KCl) at a flow rate of 2.5 ml/min. 12 fractions
were collected and lyophilized. Peptides were then desalted with 1cc Waters Sep-Pak tC18
solid-phase extraction cartridges and subjected to TiO, based phosphopeptide enrichment
[145] using 0.5mg titanium dioxide microspheres per mg protein. Eluates were further desalted
using STAGE tips [146] and lyophilized. Samples were reconstituted in 4ul 5% formic acid /
5% acetonitrile.

Mass spectrometric analysis

In most signaling systems, the major gatekeeper of signal transduction is protein phosphoryla-
tion, which can be adjusted rapidly according to the needs of a cell. A caveat of solely measur-
ing phosphorylation is that a change in phosphopeptide levels for any particular peptide can
result from a change in phosphorylation of the peptide, or from a change in levels of that pro-
tein. We expect that roughly a quarter of altered phosphorylation we observe would be ex-
plained by the latter mechanism, based on previous reports (Bodenmiller et al. Science
Signaling 2010 and Wu et al. Mol. Cell Proteomics, 2011; Sopko et al. Dev Cell 2014). Given
that coverage of the Drosophila proteome is not yet comprehensive in a single mass spec run,
normalization of phosphorylation to protein amounts can only be estimated. Further, lowly ex-
pressed proteins are often missed. For these reasons, we chose to focus exclusively on phos-
phorylation in our study. Samples were subjected to LC-MS/MS with an Orbitrap Velos Pro
mass spectrometer (Thermo Scientific) using higher-energy collision dissociation (HCD;
[147]) and a top ten method [148]. MS/MS spectra were searched against a composite database
of Drosophila melanogaster proteins derived from Flybase version 5.23 in both the forward and
reverse orientation using the Sequest algorithm [149]. Search parameters included: a precursor
mass tolerance of 20 ppm; up to two missed cleavages; static modification of TMT tags on ly-
sine residues and peptide N termini (+229.162932 Da) and +57.021464 Da accounting for car-
bamidomethylation on Cys; dynamic modification of phosphorylation (+79.966330 Da) on
Ser, Thr and Tyr and oxidation (+15.994915 Da) on Met. A target-decoy database search
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strategy [150] enabled thresholding of the false discovery rate (FDR) for MS/MS spectral as-
signment at 1%. Correct spectral matches were distinguished from incorrect matches using lin-
ear discriminant analysis based on parameters including Xcorr, ACn, precursor mass error,
peptide length, and charge state [151]. The localizations of individual phosphorylations were
assigned using the probability-based AScore algorithm [152] and only phosphosites with
AScores greater than 13 (p < 0.05) were considered in our analysis. Moreover, only phospho-
peptides with isolation specificity greater than 0.75 were considered for further analysis. Fur-
ther filtering of the dataset resulted in a final protein FDR of ~2% and a peptide FDR near
0.15%. TMT labeling was >98% efficient. For TMT reporter ion quantification, a 0.03 Da win-
dow centered on the expected mass of each reporter ion was monitored and the intensity of the
signal closest to the expected mass was recorded. Reporter ion signals were further adjusted to
correct for impurities associated with each TMT label, as described elsewhere [153]. Raw TMT
reporter ion intensities for individual phosphopeptides were normalized to the summed re-
porter ion intensity for each TMT label. Adjusted reporter ion intensities were averaged be-
tween replicates. Peptides for which only one replicate TMT labeled sample generated
detectable reporter ions were excluded from further analysis.

Database information

Complete information on Pvr modifier screen data, and DRSC library dsRNA amplicons can
be accessed at http://www.flyrnai.org/.

Supporting Information

S1 Fig. Immunoblot examining Pvr knockdown efficiency and cell cycle progression in Kc
and Kcp35 cell lines. Immunoblot examining Pvr, phospho-histone H3, and total histone H3
after two days with no treatment or two days of Pvr or GFP dsRNA treatment. Samples of
equal numbers of cells were loaded.

(PDF)

$2 Fig. RNAi knockdown efficiencies of amplicons. Summary of dsRNA-mediated knock-
down efficiencies assessed by quantitative real time PCR (qQRT-PCR) or immunoblot.
(PDF)

S3 Fig. Expression of Pvf2 following Akt knockdown. Plotted (y-axis) is the level of Pvf2 tran-
script remaining in Kc cells treated with dsRNA targeting Akt relative to a dsSRNA targeting
GFP. For normalization, Ribosomal protein L32 was used as a reference gene.

(PDF)

S4 Fig. Verification screen cell counts of 22 Pvr Suppressors. Live/dead cell counting per-
formed after silencing of 22 Pyvr Suppressors or insulin stimulation in combination with Pvr,
and compared to Pvr and GFP (control) knockdown.

(PDF)

S5 Fig. 20HE has no effect on Pvr levels. Immunoblot examining Pvr after treatment of Kc
and Kcp35 cells with 0.01 ug/ml 20HE for three days.
(PDF)

S6 Fig. Expression of rpr and E93 following Pvr and EcR knockdown. Plotted (y-axis) is the
level of rpr or E93 transcript remaining in Kc cells treated with dsRNA targeting Pvr or EcR rel-
ative to a dsRNA targeting GFP. For normalization, Ribosomal protein L32 was used as a refer-
ence gene. Two non-overlapping qPCR primers for each gene were used. No significant
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changes were observed.
(PDF)

S7 Fig. Hemocyte numbers during the embryo-larva transition. Live hemocyte counts of
embryos and larvae at the indicated times after egg laying (AEL), grown at 25C. UAS-Stinger;
Pxn-GAL4 was crossed to w1118 (control), or UAS-EcRA dn, respectively. Note that around
the time of hatching (grey bar), hemocyte numbers have dropped to about 60% of embryonic
counts. Hemocyte-specific expression of UAS-EcRA dn does not significantly protect hemo-
cytes from the decline, as indicated for 22h AEL.

(PDF)

S8 Fig. Pvr and EcR knockdown efficiency in mass spectrometry samples. Immunoblot con-
firming knockdown of Pvr and EcR (top panels) after two days dsRNA treatment in Kc cells
used for phosphoproteomic analysis by mass spectrometry.

(PDF)

S1 Table. Primary screen scores. Amplicons of primary Pvr modifier screen with resulting
ZDiff > =2 or < = -2. Pvr Enhancers, Suppressors, and Upstream Regulators are indicated.
(XLS)

S2 Table. Verification screen scores. Verification screen amplicons, Z scores of all replicates
with resulting ZDiff values. Homologs and Scores predicted using DIOPT—DRSC Integrative
Ortholog Prediction Tool (www.flyrnai.org/cgi-bin/DRSC_orthologs.pl)

(XLS)

$3 Table. Averaged final scores. Final scores ZDiftFinal resulting from equally averaging all
amplicons of a gene in the primary and secondary screen.
(XLS)

$4 Table. Phosphoproteomic data under ‘high Pvr conditions’. Phosphosites identified in Kc
cells, a condition of unaltered Pvr activity (‘high Pvr’), in combination with EcR knockdown
(‘low EcR’) or insulin stimulation (‘high InR’). Duplicate samples were examined.

(XLSX)

S5 Table. Phosphoproteomic data under ‘low Pvr’ conditions. Phosphosites identified in
Pyr RNAI cells, in combination with EcR knockdown (‘low EcR’) or insulin stimulation (‘high
InR’). Duplicate samples were examined.

(XLSX)

S6 Table. Phosphoproteomic data comparing ‘high Pvr’ and ‘low Pvr’ conditions. Phospho-
sites identified in direct comparison of Kc cells treated with control or Pvr dsRNAs, in combi-
nation with EcR knockdown (‘low EcR’) or insulin stimulation (‘high InR’).

(XLSX)

S$7 Table. Commonly regulated Pvr and InR phosphosites. Phosphosites predicted to be tar-
geted by both Pvr or InR, based on their common directionality of change under conditions of
‘high Pvr, low InR’ and ‘low Pvr, high InR’.

(XLSX)

S8 Table. Differentially regulated Pvr and InR phosphosites. Phosphosites predicted to be
targeted by either Pvr or InR specifically, based on their directionality of change under ‘high
Pvr, low InR’ and ‘low Pvr, high InR’ conditions.

(XLSX)
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