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SUMMARY

Phagocytosis is important during development and in
the immune response for the removal of apoptotic cells
and pathogens, yet its molecular mechanisms are
poorly understood. In Caenorhabditis elegans, the
CED2/5/10/12 pathway regulates actin during phago-
cytosis of apoptotic cells, whereas the role of the
CED1/6/7 pathway in phagocytosis is unclear. We re-
port that Undertaker (UTA), a Drosophila Junctophilin
protein, is required for Draper (CED-1 homolog)-medi-
ated phagocytosis. Junctophilins couple Ca2+ chan-
nels at the plasma membrane to those of the endoplas-
mic reticulum (ER), the Ryanodine receptors. We place
Draper, its adaptor drCed-6, UTA, the Ryanodine
receptor Rya-r44F, the ER Ca2+ sensor dSTIM, and
the Ca2+-release-activated Ca2+ channel dOrai in the
same pathway that promotes calcium homeostasis
andphagocytosis.Thus,our results implicateaJuncto-
philin in phagocytosis and link Draper-mediated
phagocytosis to Ca2+ homeostasis, highlighting a pre-
viouslyuncharacterized role for the CED1/6/7pathway.

INTRODUCTION

Phagocytosis is a crucial process during development and in

innate immunity of all multicellular organisms. It allows for rapid

engulfment of dying cells and pathogens by specialized phago-

cytes, such as macrophages and neutrophils in mammals

(Aderem and Underhill, 1999). Phagocytosis is also an essential

function of dendritic cells that present processed antigens to

lymphocytes, thus linking innate and adaptive immunity (Lee

and Iwasaki, 2007).
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In Caenorhabditis elegans, the death genes ced-2, 5, 10, and

12 activate the small GTPase CED-10 that triggers actin cyto-

skeleton rearrangement during phagocytosis; the parallel

CED1/6/7 pathway also converges on CED-10, but its precise

role in phagocytosis remains elusive (Mangahas and Zhou,

2005).

During Drosophila embryogenesis, two macrophage recep-

tors, Croquemort (CRQ), a CD36 homolog (Franc et al., 1999),

and Draper (DRPR), a CED-1 homolog (Manaka et al., 2004),

play a role in apoptotic cell clearance, much like their counter-

parts in mammals or C. elegans. The Drosophila homolog of

CED-6, Dmel/Ced-6 (hereafter called drCed-6), and DRPR are

also required in glial cells for axon pruning and the engulfment

of degenerating neurons (Awasaki et al., 2006; MacDonald

et al., 2006).

In a deficiency screen, we characterized a mutant in which em-

bryonic macrophages poorly engulfed apoptotic cells. In an RNAi

screen using S2 cells, we identified undertaker/retinophilin (uta)

as being responsible for this phenotype. uta encodes a mem-

brane occupational and recognition nexus (MORN) repeat-con-

taining protein with homology to mammalian Junctophilins

(JPs). JPs form junctional complexes between the plasma mem-

brane (PM) and the endoplasmic/sarcoplasmic reticulum (ER/

SR) Ca2+ storage compartment (Takeshima et al., 2000). These

complexes allow for crosstalk between Ca2+ channels at the

PM and the ER/SR Ca2+ channels, or Ryanodine receptors

(RyRs), thus regulating Ca2+ homeostasis and functions of excit-

able cells (Takeshima et al., 2000). Although a role for Ca2+ in

phagocytosis of various particles by mammalian phagocytes

has been previously described, the molecular mechanisms un-

derlying Ca2+ fluxes associated with these events are not known

(Dewitt and Hallett, 2002; Rubartelli et al., 1997; Tejle et al., 2002).

We report that, as for UTA, the Drosophila Ryanodine receptor,

Rya-r44F (Xu et al., 2000), plays a role in phagocytosis of apopto-

tic cells in vivo. We also found a requirement in phagocytosis for

mailto:n.franc@ucl.ac.uk


store-operated Ca2+ entry (SOCE) via dSTIM, a Ca2+ sensor of

the ER/SR lumen (Roos et al., 2005), and CRACM1/dOrai,

a Ca2+-release-activated Ca2+ channel (CRAC) (Feske et al.,

2006; Vig et al., 2006). We show that uta and rya-r44F genetically

interact with drced-6 and drpr, and that uta, drced6, and drpr are

required for SOCE in S2 cells. Thus, these genes act in the same

pathway that plays a general role in phagocytosis, as uta, dstim,

dorai, drced-6, and drpr are also required for efficient phagocy-

tosis of bacteria. Our results provide a link between SOCE and

phagocytosis, imply that UTA plays a similar role in macro-

phages to that of JPs in excitable cells, and shed light on

a role for the CED1/6/7 pathway in Ca2+ homeostasis during

phagocytosis.

RESULTS

Df(3R)3-4, a Deficiency Mutant, Has Reduced
Phagocytosis of Apoptotic Cells
In a deficiency screen using acridine orange (AO) to identify

mutants for apoptotic cell engulfment in the Drosophila embryo

(Silva et al., 2007), we found that embryos homozygous for

Df(3R)3-4, a large deletion of the 82F genomic region, lacked

clustering of AO-stained apoptotic corpses (compare Figures

1A and 1B), indicating that macrophages may be phagocytosis

defective. To characterize the deficiency phenotype, we stained

Figure 1. Phagocytosis of Apoptotic Cell Defect in Df(3R)3-4

Homozygous Embryos

(A and B) Wild-type (A) and Df(3R)3-4 homozygous mutant (B) AO-stained

stage 13 embryos (anterior to the left, dorsal side to the top). Insets show

higher-magnified views of AO-stained corpses.

(C–F) Macrophages of stage 13 embryos stained with CRQ Ab (green) and

7-AAD (red) that brightly stain apoptotic corpses in wild-type (C), Df(3R)3-

4 (D), Df(3R)ED5147 (E), and Df(3R)ED5138 (F) homozygous embryos. The

arrow in (D) points to an apoptotic cell seen in close proximity to the

mutant macrophage that is not engulfed, as it is not fully surrounded by

CRQ staining. Circles indicate single macrophages.

Scale bars represent 10 mm.

(G) A graph of the corresponding PIs ± SD. N, number of macrophages

scored. p values are indicated using asterisks.

(H) A schematic of the 82F region of the genome indicating the breakpoints

of the deficiencies.

embryos for Croquemort (CRQ), a macrophage marker, and

with 7-amino actinomycin D (7-AAD) to label apoptotic cells

(Silva et al., 2007). Phagocytosis phenotypes were quantified

by averaging the number of engulfed corpses per macro-

phage, which are reported as phagocytic indices (PI). Wild-

type macrophages were large and efficiently engulfed apo-

ptotic cells, with a PI of 2.73 ± 0.5 (Figure 1C; see Figures

S1A, S1E, and S1H available online). Homozygous Df(3R)3-4

macrophages poorly engulfed apoptotic cells, with a PI of

0.55 ± 0.06 (Figure 1G), and were small in size (Figure 1D).

They migrated to the sites of apoptosis (Figure S1B), occa-

sionally engulfed one corpse (Figure 1D), and, as in wild-

type, Df(3R)3-4 macrophages endocytosed injected acety-

lated low-density lipoproteins, a scavenger receptor ligand,

thereby attesting to their differentiated and functional state

(Figures S1C and S1D).

We mapped the molecular breakpoints of Df(3R)3-4 between

CG10299 (Katanin 60) and CG12005/Mms19, and within Hph

(Figure 1H). We next examined the phenotypes of the overlap-

ping deletions Df(3R)ED5138, Df(3R)ED5147, and Df(3R)ED5156

for which breakpoints have been precisely mapped (Ryder et al.,

2004) (Figure 1H). Df(3R)ED5156 homozygous macrophages

were wild-type for phagocytosis of apoptotic corpses, with a

PI of 2.90 ± 0.43 versus 2.73 ± 0.5 in wild-type (p = 0.57) (Fig-

ure 1G; Figures S1F and S1I). Df(3R)ED5147 and Df(3R)ED5138

homozygous macrophages poorly engulfed apoptotic corpses,

with PIs of 0.99 ± 0.15 and 0.95 ± 0.09, respectively, despite

elevated levels of apoptosis in the deficient embryos (Figures

1E–1G and S1G). Thus, we defined the region of interest to eight

genes between CG10229/Katanin 60 and CG31543/dHPH

(Figure 1H).

undertaker/retinophilin Is Required for Efficient
Engulfment of Apoptotic Cells
To assess the potential role for each of the eight candidate

genes in apoptotic cell clearance, we developed a phagocytosis

assay in cultured Schneider S2 cells. These are Drosophila

embryo-derived cells with macrophage-like properties that

can engulf apoptotic cells, Gram-negative (Escherichia coli)

and -positive bacteria (Staphylococcus aureus), and small

fungi, such as Candida silvatica (Ramet et al., 2001). In this
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assay, S2 cells were incubated with an excess of FITC-labeled

fixed apoptotic S2 cells to allow for engulfment, and then coun-

terstained with Cell Tracker Blue CMAC (CTB), a fluorescent

live-cell dye. The fluorescence of bound or free apoptotic cells

was quenched using the previously characterized trypan

blue method (Ramet et al., 2001), so that the only remaining

FITC detected was that of fully engulfed apoptotic cells (Fig-

ure S2A). As expected, trypan blue quenched the fluorescence

of all apoptotic cells when the assay was carried out at 4�C,

which is nonpermissive to particle engulfment (Figure S2B).

We validated the assay by subjecting it to conditions that

positively or negatively affect phagocytosis (see Supplemental

Data).

We used this assay to carry out a genomewide RNAi screen,

which will be described elsewhere (L.C. and N.C.F., unpub-

lished data). RNAi of rab5, a gene required for phagocytosis

of bacteria (Ramet et al., 2001), markedly reduced the ability

of S2 cells to engulf apoptotic cells, thereby confirming a gen-

eral role for rab5 in phagocytosis (Figure 2C; compare Figures

S2E and S2F). RNAi of one of the eight genes that falls into the

Df(3R)3-4 deficiency region of interest, namely CG10233, also

led to a significant reduction in the efficiency of S2 cells to en-

gulf apoptotic cells (compare Figures 2A and 2B; Figure 2C).

RNAi of the other seven genes (listed in Figure 1H) did not

affect phagocytosis (data not shown). Thus, CG10233 is the

Figure 2. Requirement for CG10233/undertaker in Phagocytosis

of Apoptotic Cells

(A and B) Phagocytosis of apoptotic cells by mock- (A) or uta RNAi-treated

(B) S2 cells. Scale bars represent 200 mm.

(C) A graph summarizing the quantification of these assays with rab5

RNAi-treated S2 cells as a control. Bars represent the mean percentage

of engulfing cells ± standard errors from the mean (SEM) of three indepen-

dent experiments with duplicated wells.

(D–F) Merged confocal images of yw; +; crq::Gal4, UAS::eGFP (wild-type

reference) (D), yw; +; Df(3R)3-4, crq::Gal4, UAS::eGFP (mutant reference)

(E), and yw: UAS::CG10233; Df(3R)3-4, crq::Gal4, UAS::eGFP homozy-

gous macrophages (rescue) (F). Apoptotic cells are stained with 7-AAD

(red), GFP-expressing macrophages appear green, and CRQ Ab is in

blue. Scale bars represent 10 mm.

(G) A graph of the mean PIs ± SD of these macrophages.

likely candidate gene responsible for the deficiency pheno-

type.

To address whether CG10233 is required for phagocytosis

in vivo, we used a crq::gal4 driver to express a UAS::CG10233

transgene, along with UAS::eGFP, in Df(3R)3-4 mutant mac-

rophages (Figure 2F) and compared these macrophages’

phenotype to that of embryos where the UAS::CG10233

transgene was absent (Figure 2E). The reexpression of

CG10233 in Df(3R)3-4 mutant macrophages rescued their

ability to efficiently engulf apoptotic cells (Figures 2F and

2G), with a PI of 2.50 ± 0.66 versus 0.55 ± 0.06 in the mutant

(Figures 2E and 2G) and 2.09 ± 0.43 in control crq::Gal4,

UAS::eGFP macrophages (Figures 2D and 2G; p = 0.33).

Thus, CG10233 is required in macrophages to promote apo-

ptotic cell clearance. We renamed CG10233 as undertaker

(uta), as its mutant phenotype is reminiscent of that of crq

and pallbearer (pall) deletion mutants (Franc et al., 1999; Silva

et al., 2007). While our work was in progress, CG10233 was

also named retinophilin, as it is expressed in the fly retina

(Mecklenburg, 2007).

uta Behaves as a JP and Genetically Interacts
with the Ryanodine Receptor Gene rya-r44F

uta encodes two JP-related protein isoforms with two and four

MORN repeats (Figure 3A) (Mecklenburg, 2007). To assess

whether UTA may form similar junctional complexes between

PM and ER to those formed by JPs in mammalian excitable

cells, we stained S2 cells or embryonic macrophages using

a Retinophilin/UTA Ab (Mecklenburg, 2007), while marking the

PM using an Ab against the Na+/K+ ATPase a subunit (Lebovitz

et al., 1989) (Figures 3B–3D), or the ER using Abs against PDI

(Burlak et al., 2006) or KDEL (Pinto et al., 2006) (Figures 3I and

3J). We observed some colocalization between UTA and the

Na+/K+ ATPase a subunit in puncta at the PM ruffling of S2 cells

(Figure 3D and inset), as well as at the site of apoptotic cell en-

gulfment (arrow in Figure 3D). There was also some colocaliza-

tion between CRQ and UTA on embryonic macrophages, in

both small intracellular vesicles and large vesicles, which are

likely to contain apoptotic corpses, arguing that UTA may be

present on the phagosome (Figures 3E–3G; inset in Figure 3G).

We confirmed this colocalization of CRQ and UTA on phago-

somes containing apoptotic cells in S2 cells (Figure 3H). As
526 Cell 135, 524–534, October 31, 2008 ª2008 Elsevier Inc.



predicted from its distribution, which is reminiscent of that of ER

(Figure 3B), UTA colocalized with both PDI and KDEL in a subset

of the ER (Figures 3I and 3J), supporting a role for UTA in

coupling PM and ER in phagocytes.

The Drosophila Ryanodine receptor-encoding gene, rya-r44F,

acts as a Ca2+ channel on the ER/SR membrane (Xu et al., 2000).

rya-r44F mutants show slow feeding, locomotion, and heart rate

that result in larval lethality (Sullivan et al., 2000), arguing that

Rya-r44F plays a similar role to that of RyRs in mammals. To ad-

dress whether Ca2+ release from the ER/SR storage compart-

ment via Rya-r44F might play a role in phagocytosis of apoptotic

cells, we used its specific antagonist, ryanodine. When treated

with a 200 mM blocking concentration of ryanodine, the ability

of S2 cells to engulf apoptotic cells was reduced by �47%

(Figure S3A). We assessed the phenotypes of two rya-r44F

hypomorphic mutants, rya-r44F16 and rya-r44Fk04913 (Sullivan

et al., 2000). As in uta deficiency embryos, rya-r44F16 and rya-

r44Fk04913 homozygous macrophages were defective in phago-

cytosis of apoptotic cells (compare Figure 4A with Figures 4B

and 4C), with PIs of 0.74 ± 0.34 and 0.72 ± 0.20, respectively

(Figure 4D). Thus, rya-r44F is required for efficient phagocytosis,

arguing that Ca2+ release from the ER/SR into the cytosol is inte-

gral to this process.

To address whether uta genetically interacted with rya-r44F,

we assessed the phenotypes of embryos heterozygous for

both the uta deficiency and either of the rya-r44F alleles.

Figure 3. UTA Encodes a MORN Repeat-Containing Protein and

Colocalizes with PM, ER, and Phagosomal Markers

(A) A schematic of the two isoforms encoded by uta with corresponding

MORN repeat amino acid sequences.

(B–D) S2 cells costained with UTA (green) (B) and the Na+/K+ ATPase

subunit (red) (C) Abs and the corresponding overlay (D), with DAPI in blue.

(E–G) Embryonic macrophages costained with CRQ (red) (E) and UTA

(green) (F) Abs and the corresponding overlay (G).

(H) S2 cells costained with both CRQ (green) and UTA (red) Abs, and DAPI

(blue). Of note is that we could not distinguish the staining of UTA on the

membrane of the apoptotic cell being engulfed from that of UTA on the

phagosomal membrane of the engulfing cells.

(I and J) S2 cells costained with UTA (red) and PDI (green) Abs (I) or with

UTA (red) and KDEL (green) Abs (J).

Scale bars in (B)–(D) and (H)–(J) represent 10 mm, and in (E–G) represent

5 mm.

Whereas single heterozygous macrophages had no pheno-

type, those in both double heterozygous combinations had

a defect in apoptotic cell clearance, with PIs of 0.86 ± 0.21

and 0.79 ± 0.11 with rya-r44F16 and rya-r44FK04913, respec-

tively (Figure 4D). These results argue that UTA acts together

with Rya-r44F to promote efficient phagocytosis, and that

UTA is likely to regulate Ca2+ homeostasis during this pro-

cess by forming junctional complexes that link PM events

to ER/SR Ca2+ release via Rya-r44F.

The release into the cytosol of Ca2+ from the ER/SR com-

partment promotes store-operated Ca2+ entry (SOCE) (Par-

ekh and Putney, 2005). CRACM1/dOrai, a CRAC channel

with similar properties to those in mammalian cells, was iden-

tified in genomewide RNAi screens for genes required for

SOCE in S2 cells (Feske et al., 2006; Vig et al., 2006). uta

was also found in one such SOCE RNAi screen (Vig et al.,

2006). To confirm that uta plays a role in SOCE, we tested uta

RNAi-treated S2 cells (knocked down by 61%; Table S1) for their

ability to trigger SOCE after thapsigargin (TG) treatment, a bind-

ing inhibitor of the ER Ca2+ ATPase (SERCA) pump. TG treatment

leads to net leakage of Ca2+ from the ER and a rise in intracellular

Ca2+ concentration ([Ca2+]i). This ER Ca2+ depletion leads to

SOCE via CRAC channels in mock-treated S2 cells (Figure 4E).

In the absence of TG, uta RNAi cells behaved like mock-treated

cells and elicited a similar extracellular Ca2+ uptake via ER store-

independent Ca2+ channels (Figure S5). Upon TG treatment, uta

RNAi-treated S2 cells failed to elicit SOCE after 2 mM Ca2+

addition to the medium, as for dorai and dstim RNAi control cells

(Figure 4E). We observed a range of responses to TG in uta RNAi-

treated cells, with cells that were as efficient as mock-treated

cells or weakly elicited ER Ca2+ release, all failing to trigger

Ca2+ entry via dOrai (Figure S4). Although observing cells that

weakly released Ca2+ from the ER after TG treatment was

consistent with previous reports that JPs are required for the

opening of the RyRs, mock-treated S2 cells showed a similar

heterogeneity in response to TG as uta RNAi-treated cells

(Figure S4). This might be due to the heterogeneity in population

of S2 cells. Regardless, our average results (Figure 4D) agree

with those obtained with mammalian cells, where JPs have

been shown to be required for SOCE independently of ER

Ca2+ release (Hirata et al., 2006), and support a similar role for
Cell 135, 524–534, October 31, 2008 ª2008 Elsevier Inc. 527



UTA in SOCE. They do not, however, support a role for UTA in ER

Ca2+ release after TG treatment. By analogy with JPs and their

distribution between the ER and PM, UTA might still play a role

in linking PM events to ER Ca2+ release in vivo (a role which

may be bypassed by TG treatment). Further studies will be

required to address this.

Store-Operated Ca2+ Entry Is Required for Efficient
Phagocytosis of Apoptotic Cells
Because uta and rya-r44F are both required for phagocytosis of

apoptotic cells, we asked whether extracellular Ca2+ entry

downstream of Rya-r44F opening was also required. We incu-

bated S2 cells with FITC-labeled apoptotic S2 cells in the pres-

ence of EGTA, which depletes S2 cells of extracellular Ca2+.

The EGTA treatment reduced the ability of S2 cells to phagocy-

tose apoptotic corpses by �59% (68% ± 5% engulfing cells in

control versus 28% ± 2% in EGTA-treated cells; p % 0.003); their

viability was unaffected as demonstrated by CTB staining (com-

pare Figures 5A and 5B). These results support a role for extra-

cellular Ca2+ entry in phagocytosis of apoptotic cells by S2 cells,

possibly via CRAC channels.

In the presence of 1 mM BTP-2, a potent inhibitor of the CRAC

channel (Zitt et al., 2004), S2 cells poorly engulfed apoptotic cells

(Figure S3A). dSTIM and dOrai are essential for SOCE in S2 cells

(Feske et al., 2006; Roos et al., 2005; Vig et al., 2006). To address

whether these genes were required for apoptotic cell clearance,

Figure 4. Requirement for the Drosophila Ryanodine Receptor-

Encoding Gene, rya-r44F, which Genetically Interacts with uta

(A–C) Macrophages of stage 13 wild-type (A), homozygous rya-r44F16 (B),

and rya-r44Fk04913 (C) embryos stained with the CRQ Ab (green) and

apoptotic corpses detected with 7-AAD (red). Scale bars represent 10 mm.

(D) A graph of the corresponding PIs ± SD, and of double heterozygous

macrophages for the uta deficiency and each rya-r44F allele.

(E) A graph of the changes in fluo-3AM fluorescence in mock, dorai, dstim,

and uta RNAi-treated S2 cells exposed to 2.5 mM TG in Ca2+-free medium

at 30 s and to 2 mM extracellular Ca2+ 150 s later. Results are given as a fold

increase of the mean fluo-3 fluorescence ± SEM measured over time.

we knocked them down by RNAi in S2 cells and assessed

their mRNA expression levels (Table S1) and associated phe-

notypes (Figures 5C–5E). As for uta, dstim and dorai RNAi-

treated S2 cells poorly engulfed apoptotic cells (Figures

5C–5E). Although there are currently no mutants for dstim,

there are two lethal recessive P element insertions within

the dorai gene (also known as olf186-F) that might disrupt

its function (Figure S6). Homozygous mutant macrophages

for each allele, namely olf186-FK11505 and olf186-FEY09167,

were phagocytosis defective (compare Figures 5F and 5G;

data not shown), with PIs of 0.75 ± 0.08 and 0.67 ± 0.04,

respectively (Figure 5I). Moreover, each allele genetically

interacted with the uta deficiency (Figures 5H and 5I; data

not shown), with PIs of 0.67 ± 0.14 and 0.73 ± 0.17, for the

respective double heterozygotes. Thus, dstim and dorai are

required for phagocytosis of apoptotic cells in the same

pathway as uta and rya-r44F.

To examine Ca2+ homeostasis in vivo, we expressed the

Ca2+ reporter transgene UAS::GCaMP1.6 under the control

of crq::Gal4 (Movies 1A and 1B). We observed highly dynamic

fluctuations of intracellular Ca2+ levels, where increases in

GCaMP fluorescence, reflecting increased levels of Ca2+, were

observed in macrophages preceding apoptotic cell engulfment;

a decrease in GCaMP fluorescence was observed once the par-

ticle was fully ingested (Movie 2). These results are consistent

with a previous report showing a rise in [Ca2+]i upon particle

binding by neutrophils, which rapidly resolves to basal [Ca2+]i

after phagosome closure around the particle (Dewitt and Hallett,

2002).

UTA and Rya-r44F Link the DRPR/drCed-6 Pathway
to Ca2+ Homeostasis during Phagocytosis
In C. elegans, the scavenger receptor-related CED-1 accumu-

lates around apoptotic cells during engulfment; CED-6, an adap-

tor for CED-1, and CED-7, an ATP-binding cassette transporter,

all act in the same phagocytic pathway (Mangahas and Zhou,

2005). The precise role of this pathway, however, is not well

understood.

In our deficiency screen, we found that Df(2R)w45-30n, which,

among other genes, deletes drced-6, was phagocytosis defec-

tive with a PI of 0.68 ± 0.15 (Figure 6D). A P element insertion pre-

dicted to mutate drced-6, drced-6KG03411a, was also defective

(compare Figures 6A and 6B) with a PI of 0.78 ± 0.21 (Figure 6D),

confirming a previously reported role for drced-6 in phagocytosis

of apoptotic cells (Awasaki et al., 2006; Hoopfer et al., 2006).
528 Cell 135, 524–534, October 31, 2008 ª2008 Elsevier Inc.



Remarkably, as for uta, drced-6 was also a hit in a genomewide

RNAi screen for SOCE (Vig et al., 2006). Thus, we tested whether

the uta deficiency and drced-6KG03411a allele might genetically in-

teract. We found that double heterozygous macrophages poorly

engulfed apoptotic cells, with a PI of 0.78 ± 0.06 (Figure 6D). This

phenotype was rescued by driving the UAS::CG10233 (uta) trans-

gene expression with crq::Gal4 in the double heterozygous back-

ground (PI of 2.24 ± 0.24; p = 0.1) (Figure 6D). Heterozygous for

drced-6KG03411a and Df(3R)ED5156, which does not delete uta,

were wild-type for phagocytosis (PI of 2.69 ± 0.39; p = 0.91).

Consistent with drpr being required for apoptotic cell clear-

ance (Manaka et al., 2004), macrophages in homozygous

embryos for the drprrec8D5 null allele (Freeman et al., 2003)

were phagocytosis defective, with a PI of 0.78 ± 0.06 (compare

Figures 6A and 6C; see Figure 6D). Whereas macrophages in

embryos heterozygous for drprrec8D5, and for Df(3R)ED5156

and drprrec8D5, had a wild-type phenotype with PIs of 2.39 ±

0.40 (p = 0.28) and 2.53 ± 0.47 (p = 0.54), respectively, macro-

phages in embryos double heterozygous for drprrec8D5 and the

uta deletion, or for drprrec8D5 and the rya-r44Fk04913 hypomorphic

allele, were phagocytosis defective with PIs of 0.48 ± 0.15 and

0.68 ± 0.14, respectively (Figure 6D). These results demonstrate

a genetic link between uta, rya-r44F, and the drpr/drced-6

pathway.

Figure 5. Requirement for SOCE in Phagocytosis of Apoptotic

Cells

(A–D) Phagocytosis of apoptotic cells (green) by S2 cells (blue) in the

absence (A) or presence (B) of 2 mM EGTA, or by dstim (C) and dorai (D)

RNAi-treated S2 cells. Scale bars represent 200 mm.

(E) A graph summarizing these assays, where bars represent the mean

percentage of engulfing cells ± SEM of three independent experiments

in duplicates.

(F–H) Wild-type (F), oraik11505 homozygous mutant (G), and oraik11505/+;

Df(3R)3-4/+ double heterozygous macrophages stained with CRQ Ab

(green) and 7-AAD (red). Scale bars represent 10 mm.

(I) A graph of the mean PIs ± SD.

We confirmed that, as for uta, dorai, and dstim, drced-6

was required for SOCE, as drced-6 RNAi-treated S2 cells

failed to elicit Ca2+ entry upon TG treatment (Figure 6E).

Surprisingly, drpr RNAi-treated S2 cells also appeared less

responsive to Ca2+ addition after TG treatment, arguing

that drpr is also required for SOCE (Figure 6E). Neither

drced-6 nor drpr RNAi-treated S2 cells failed to trigger

Ca2+ entry via ER store-independent Ca2+ channels in the

absence of TG treatment, thus solely playing a role in

SOCE (Figure S5). Thus, UTA, Rya-r44F, DRPR, and

drCed-6 act in the same pathway that regulates Ca2+ homeo-

stasis during phagocytosis of apoptotic cells.

Store-Operated Ca2+ Entry Is Required for Efficient
Phagocytosis of Bacteria
In mammals, phagocytes engulfing various particles exhibit

a rise in [Ca2+]i (Dewitt and Hallett, 2002; Rubartelli et al.,

1997; Tejle et al., 2002), arguing that SOCE is generally asso-

ciated with phagocytosis. We asked whether uta, dstim, and

dorai might be required for phagocytosis of Gram-negative

or -positive bacteria by exposing RNAi-treated S2 cells to either

E. coli or S. aureus labeled with pHrodo, a dye that fluoresces in

the acidic environment of a mature phagosome upon fusion with

lysosomes (Fiala et al., 2007). No fluorescence could be de-

tected when the assay was performed at 26�C in the presence

of cytochalasin D, or at 4�C, conditions where phagocytosis is

prevented (Figures S7A–S7D; data not shown). As with apoptotic

cells, uta, dstim, and dorai RNAi-treated S2 cells poorly phago-

cytosed E. coli and S. aureus (Figure 7A). Ryanodine and the

CRAC channel inhibitor BTP-2 also inhibited bacterial engulf-

ment (Figures S3B and S3C). These results demonstrate a role

for SOCE in bacterial phagocytosis.

To examine Ca2+ changes in response to bacterial engulfment

in vivo, we injected UAS::GCaMP1.6 reporter-expressing em-

bryos with TRITC-labeled E. coli (to visualize the red bacterium

prior to and throughout engulfment). Correlating an increase in

GCaMP fluorescence (i.e., Ca2+) in macrophages upon particle

binding in vivo is difficult, as macrophages may receive other

stimuli affecting their [Ca2+]i (such as an apoptotic stimulus).

However, macrophages showed high GCaMP fluorescence

(i.e., Ca2+ level) after bacterial injection. As seen in apoptotic

cell engulfment, the macrophage GCaMP fluorescence (i.e.,

Ca2+ level) dropped following recognition of bacteria that ap-

peared to have been taken up into a mature phagosome, as
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suggested by their sustained discoloration from red to a slightly

orange color (Movie 3).

DRPR and drCed-6 Play a Role in Bacterial Phagocytosis
A role for drpr and drced-6 was previously described only in ap-

optotic cell clearance (Awasaki et al., 2006; MacDonald et al.,

2006; Manaka et al., 2004). Our findings that uta, dstim, and dorai

generally acted in phagocytosis and genetically interacted with

drced-6 and drpr suggested a possible role for these two genes

also in bacterial engulfment. drced-6 and drpr RNAi-treated S2

cells were indeed defective in bacterial phagocytosis (Figure 6E).

This was not the result of a lack of specificity in our phagocytosis

assays: crq RNAi-treated S2 cells failed to efficiently engulf

apoptotic cells (Figure S3A), as well as S. aureus (Figure S3C),

but engulfed E. coli as efficiently as mock-treated S2 cells

(Figure S3B). These results are consistent with a known role for

CRQ in phagocytosis of apoptotic cells (Franc et al., 1999) and

of S. aureus (Stuart et al., 2005). As previously reported (Kocks

et al., 2005), eater RNAi-treated cells failed to efficiently engulf

both E. coli and S. aureus, but efficiently engulfed apoptotic cells

(Figures S3A–S3C). These results highlight complexity in the mo-

lecular mechanisms underlying recognition specificity: neither

CRQ nor DRPR appear to be uniquely involved in the recognition

of apoptotic cells, or of Gram-positive or -negative bacteria.

Figure 6. drCed-6 and drpr Genetically Interact with

uta and rya-r44F and Are Required for Phagocytosis

and SOCE

(A–C) Macrophages of stage 13 wild-type (A), homozygous

dced6KG03411a (B), and drprrec8D5 (C) mutant embryos immu-

nostained with the CRQ Ab (green) and apoptotic corpses

detected with 7-AAD (red). Scale bars represent 10 mm.

(D) A graph of the mean PIs ± SD for each double or trans-

heterozygous combination compared to homozygous gene

mutations.

(E) Changes in fluo-3AM fluorescence of mock, dstim, drCed-

6, and drpr RNAi-treated cells. Results are given as a fold

increase of the mean fluo-3 fluorescence ± SEM measured

over time.

To assess whether bacterial engulfment may be

less efficient in drced-6KG03411a and drprrec8D5

mutants, we injected pHrodo-labeled E. coli or

S. aureus in homozygous adults (Figures 7C, 7D,

7F, and 7G). Preinjection of latex beads into adults

saturated phagocytosis and prevented uptake of

pHrodo bacteria in subsequent injections, and

served as controls (compare Figures S6E and

S6F). In drced-6KG03411a and drprrec8D5 mutant flies,

macrophages poorly engulfed bacteria, as less

fluorescence could be observed within their abdo-

mens than in wild-type flies (compare Figures 7C

and 7D with Figure 7B, and Figures 7F and 7G

with Figure 7E). Thus, uta, dstim, dorai, drced-6,

and drpr are all required for efficient clearance of

apoptotic cells and bacteria, demonstrating a gen-

eral role for SOCE in phagocytosis. This also pro-

vides evidence for a previously unappreciated role

for the DRPR/drCed-6 pathway in bacterial engulf-

ment, although additional studies will be required to assess its

role in host defense upon bacterial infection.

DISCUSSION

Binding of various particles induces a rise in [Ca2+]i in mammalian

phagocytes (Dewitt and Hallett, 2002; Rubartelli et al., 1997; Tejle

et al., 2002). In dendritic cells, [Ca2+]i increases upon apoptotic cell

binding via integrin, and inhibition studies have suggested that

both Ca2+ release from the ER/SR storage pool and extracellular

Ca2+ entry into the cytosol are required for this process (Rubartelli

etal., 1997).Neutrophils also relyonsuchchanges topromote par-

ticle engulfment (Dewitt and Hallett, 2002; Kindzelskii and Petty,

2003). Yet, the molecular mechanisms underlying this rise in

[Ca2+]i and what role it plays in phagocytes are poorly understood.

We found that uta, a Drosophila gene encoding a JP-related

protein, is required for phagocytosis of apoptotic cells. We pro-

vided genetic evidence of a role for a Ryanodine receptor, Rya-

r44F, and genetically linked uta and rya-44F. We also found that

SOCE via dstim and dorai promotes efficient apoptotic cell clear-

ance. We genetically linked uta and rya-44F to drpr and drced-6,

and found a role for uta, drpr, and drced-6 in SOCE, thus dem-

onstrating a functional link between the DRPR/drCed-6 pathway

and SOCE during phagocytosis.
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We propose a model whereby apoptotic cell binding via DRPR

(and possibly other receptors, such as CRQ) leads to ER Ca2+

release via Rya-r44F (Figure S8A). DRPR, which bears an immu-

noreceptor tyrosine-based activation motif (ITAM) that is phos-

phorylated via Src and Syk family kinase-mediated signaling,

appears to behave like an immunoreceptor (Ziegenfuss et al.,

2008). In B and T lymphocytes, engagement of Fc immunorecep-

tors (the signaling of which also relies on phosphorylation on

ITAMs) leads to a rise in [Ca2+]i (Feske, 2007). Thus, DRPR might

play a similar role to that of Fc receptors in the signaling, leading

to a rise in [Ca2+]i in macrophages.

UTA is localized in the ER and at the PM. Thus, we propose

that, like JPs, UTA forms junctional complexes that link the PM

events to the ER and trigger Ca2+ release from ER stores

(Figure S8A). Our studies, however, did not address whether

the formation of UTA junctional complexes is required to trigger

ER Ca2+ release via Rya-r44F, nor what triggers ER Ca2+ release.

The resting membrane potential of mammalian phagocytes is

depolarized upon contact with apoptotic cells (Vernon-Wilson

et al., 2007). As in mammalian muscle cells, such changes in

fly phagocytes might initiate ER Ca2+ release.

In S2 cells, our Ca2+ imaging results with drpr and drced-6

RNAi (Figure 6E) and that of others with drced-6 RNAi (Vig

et al., 2006) suggest that drpr and drced-6 are required for

dOrai-mediated Ca2+ entry upon TG treatment (which bypasses

the need for particle binding to the receptor). We propose that ER

Ca2+ release feeds back onto DRPR and drCed-6 to activate

Figure 7. drCed-6 and drpr Are Required for Bacterial Phagocy-

tosis

(A) Graphs summarizing pHrodo E. coli or S. aureus engulfment by RNAi-

treated cells for uta, dstim, dorai, draper, and drCed-6. Results are given

as a percentage of engulfing cells ± SEM.

(B–G) Abdomens of control w flies (B and E), and drCed-6KG03411a (C and

F) and drprrec8D5 (D and G) homozygous mutant flies injected with pHrodo

E. coli (B–D) or S. aureus (E–G). The bright white spots seen in the abdo-

men correspond to bacteria that were engulfed by plasmatocytes (adult

macrophage-equivalent).

their downstream signaling cascade (Figure S8B). Although

further studies will be required to test the validity of this pro-

posal, several reports already support it: DRPR-mediated

phagocytosis depends on Src and Syk family kinase signal-

ing (Ziegenfuss et al., 2008), and the activity of such kinases

can be Ca2+ dependent in mammalian cells (Papp et al.,

2007; Wang et al., 1994).

We then proposed that signaling downstream of DRPR

and drCed-6 promotes and/or maintains the formation of

UTA junctional complexes (Figure S8C), thereby linking ER

Ca2+ release to SOCE (Figure S8D). dSTIM is indeed likely

to act as an ER Ca2+ sensor that oligomerizes (Luik et al.,

2008) and redistributes to ER-PM junctions upon ER Ca2+

depletion, as for its mammalian counterparts (Feske, 2007).

We propose that UTA junctional complexes are needed to

maintain a close proximity between the ER Ca2+ stores and

the PM and to juxtapose dSTIM oligomers and dOrai, thereby

promoting conformational changes and opening of dOrai

(Figure S8D). DRPR- and drCed-6-dependent signaling

and/or UTA may also be required for dSTIM oligomerization.

The resulting increase in [Ca2+]i then promotes engulfment of

the particle.

Ca2+ may promote phagocytosis via several ways. It can

enhance scavenger receptor (SR) activity: adhesion of mouse

macrophages to a fibronectin-coated surface via integrin binding

results in an increase in the number of SRs at their PM, which

enhances their binding activity (Beppu et al., 2001). This enrich-

ment in SRs is dependent on extracellular Ca2+ influx, arguing in

favor of a role for Ca2+ in SR trafficking and/or recycling. Several

SRs or related receptors play a role in phagocytosis of apoptotic

corpses, including the mammalian CD36 (Savill et al., 1992) and

its Drosophila homolog CRQ (Franc et al., 1999). Although we do

not see a change in CRQ expression in uta mutant macrophages,

CRQ and UTA colocalize and genetically interact (N.C.F., unpub-

lished data). One possible model is that CRQ is recruited to the

phagocytic cup upon apoptotic cell binding after SOCE that

depends on UTA, DRPR, and drCed-6, and that this might

strengthen the binding and uptake of the corpse.

In C. elegans, CED-1 (DRPR homolog) is related to the endo-

thelial scavenger receptor SREC. Its recruitment to the phago-

cytic cup depends on functional CED-7 (Zhou et al., 2001), and

may occur by exocytosis (Yu et al., 2006). Components of the

exocyst were implicated in phagocytosis (Stuart et al., 2007).

Moreover, Orai1 is required for degranulation of mast cells,

which occurs by exocytosis (Vig et al., 2008). Thus, like Orai1,

dOrai may be required for exocytosis and, whereas DRPR
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appears to always be present at the PM (Freeman et al., 2003),

CRQ may be recruited from its intracellular vesicular pool to

the phagocytic cup by exocytosis, as previously proposed for

CED-1, to promote apoptotic cell uptake.

A rise inCa2+ was observed inmammalian neutrophils upon par-

ticle binding (Dewitt and Hallett, 2002), and Ca2+ participates in

phagocytosis by promoting F-actin breakdown and phagosome

maturation (Tejle et al., 2002). Mycobacterium tuberculosis is

able to invade human macrophages without triggering an increase

in [Ca2+]i: in the absence of Ca2+ signaling, phagosomes contain-

ing M. tuberculosis fail to mature, perhaps explaining the survival

of this bacterium in the cell (Kusner, 2005). A role for Ca2+ in parti-

cle binding and phagosome maturation in macrophages, how-

ever, was oncediscounted (Zimmerli et al., 1996). uta, dstim, dorai,

drCed-6, and drpr are required to trigger SOCE. Yet, although they

are poorly phagocytic, macrophages in drced-6 hypomorphs and

drpr null mutants engulf bacteria into fully matured phagosomes,

arguing against Ca2+ being involved in phagosome maturation.

This maturation, however, might still occur with lower efficiency

when SOCE fails, as RNAi-treated S2 cells for all genes in this

pathway poorly engulfed bacteria.

Our findings that UTA links DRPR-mediated phagocytosis and

Ca2+ homeostasis provide us with the opportunity to pursue the

dissection of the DRPR pathway in Drosophila. DRPR is homol-

ogous to CED-1, which belongs to the CED1/6/7 pathway where

CED-7 is an ABC transporter. Interestingly, an ABC transporter

can modulate Ca2+ channel activity in plants (Suh et al., 2007),

further supporting a link between the CED1/6/7-like pathways

and Ca2+ homeostasis, which appears to have been conserved

throughout evolution. Furthermore, a mutation in human Orai1

was found in some patients with severe combined immune

deficiency (Feske et al., 2006). Thus, pursuing such studies

might be relevant to mammalian systems and to human health.

EXPERIMENTAL PROCEDURES

Fly Strains

Fly strains were from the Szeged or Bloomington Drosophila stock centers

(unless otherwise specified) and crossed to a balancer chromosome carrying

a kr::GFP transgene to select embryos of the appropriate genotype. We gen-

erated UAS transgenic flies following standard procedures by injecting a UAS

construct and helper plasmid at the concentrations of 200 and 100 ng/ml,

respectively. For in vivo rescue of uta, crq::gal4 and UAS::eGFP were recom-

bined onto the Df(3R)3-4 chromosome to express cytoplasmic eGFP in mac-

rophages specifically. Df(3R)3-4, crq::gal4, UAS::eGFP and UAS::CG10233;

Df(3R)3-4, crq::gal4, UAS::eGFP homozygous embryos were identified based

on dose-sensitive expression of GFP (Silva et al., 2007).

Acridine Orange, 7-AAD, Immunostainings, and Imaging

AO and 7-AAD stainings were performed as previously described (Silva et al.,

2007). In immunostainings, the Abs used were rabbit anti-CRQ (1:1000), rat

anti-CRQ (1:100), mouse anti-GFP (Roche; 1:4000), mouse anti-KDEL (Calbio-

chem; 1:200), mouse anti-PDI (Abcam; 1:250), rabbit anti-Retinophilin (1:100),

and mouse anti-Na+/K+ ATPase (Developmental Studies Hybridoma Bank;

1:20), following standard methods. FITC-secondary Abs were from Vector

Laboratories or Jackson Laboratories (1:1000); Cy5- and TRITC-coupled sec-

ondary Abs were from Jackson Laboratories (1:1,000). Nuclei of S2 cells were

counterstained using DAPI-Vectashield (Vector Laboratories). Confocal imag-

ing was performed on a Bio-Rad Radiance confocal microscope equipped

with a Nikon upright microscope, or a Leica TCS SP5 confocal equipped

with an inverted DMI6000 microscope.
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Statistical Analyses of PIs

PIs were quantified as previously in Silva et al. (2007). Standard deviations (SD)

were derived from the PIs calculated from four or five embryos per genotype.

ANOVA tests comparing PIs between wild-type and mutants were calculated;

p values are indicated in the figures.

Preparation of Apoptotic Cells

Exponentially grown S2 cells were treated with 0.25 mg/ml of actinomycin D

(Sigma) for 18 hr, fixed in 10% formaldehyde/serum-free Schneider medium

(SFM), washed, and resuspended in 1 ml of SFM at a concentration equivalent

to 8–10 3 106 cells/ml. Lyophilized FITC isomer (Molecular Probes) was resus-

pended to 100 ml/ml in DMSO; 25 ml was freshly added to 1 ml of apoptotic

cells, incubated for 1 hr at room temperature, and washed twice in SFM.

Phagocytosis Assays

Exponentially growing S2 cells were plated at a density of�2.5–7.2 3 103 cells/

mm2. Apoptotic cells were added to live S2 cells at a ratio of 10:1; this ratio is

a live cell to live cell ratio prior to apoptosis induction. Apart for the time course,

cells were incubated for 5 hr or overnight, counterstained with 25 mM Cell

Tracker Blue CMAC (Molecular Probes) for 1 hr, and washed in PBS. Three

hundred or 50 ml of 0.4% trypan blue solution (Sigma) was added in a 24- or

384-well plate, respectively. Bacterial phagocytosis assays using pHrodo

E. coli and S. aureus bioparticles (Invitrogen) were performed according to

the manufacturer’s instructions. Cells were treated with cytochalasin D at

10 mM for 1 hr prior to adding particles.

RNA Interference

Amplicons were amplified from single-embryo DNA preparation as in Franc

et al. (1999) or as described in Supplemental Experimental Procedures, where

primer set (MWG Biotech AG) sequences are supplied. PCR cycles were as

follows: 94�C for 3 min, followed by 94�C for 45 s, 57�C for 30 s, and 72�C

for 45 s for 30 cycles, and a 10 min extension at 72�C. Double-stranded

RNAs were produced using 1 mg of amplicon and the T7 Megascript RNAi

kit following Ambion’s instructions. RNAi experiments were performed on

exponentially growing cells, following the DRSC bathing protocol in either

384-well (for the screen), 96-well (for phagocytosis assays), or 6-well plates

(for Ca2+ imaging) (http://flyrnai.org/). Engulfment assays were performed after

3 days, as described above.

Ca2+ Imaging

Cells were plated on a 32 mm glass bottom dish (Willco) and loaded with

2.5 mM fluo-3 AM, a cell-permeant Ca2+ fluorophore, in 2 ml of complete

medium with 6.25 mM probenicid for 45 min. Cells were washed twice with

Ca2+-free saline solution (120 mM NaCl, 5 mM KCl, 8 mM MgCl2, 32.2 mM

sucrose, 0.1 mM EGTA, 10 mM HEPES [pH 7.2]) with probenicid, and covered

with 1.6 ml of this solution. Sixty time points were recorded with a lapse of 5 s

between frames. TG ([2.5 mM] final in Ca2+-free solution) was added at 30 s;

CaCl2 was added at a final concentration of 2 mM, 150 s later. Images were

analyzed using Volocity 4.2.0 (Improvision) by measuring the fluo-3 AM fluo-

rescence of individual cells responding to TG over time. Mean values obtained

for these cells from at least three independent experiments were calculated

and the corresponding fold increases in fluorescence were derived, which

are reported with corresponding standard errors from the mean (SEM).

Bacteria Injection Assay in Adult Flies

pHrodo E. coli and S. aureus bioparticles (Invitrogen) were resuspended

according to the manufacturer’s instructions, and 138 nl was injected into adult

males using a Drummond Scientific Nanoject II. After 2 hr, the flies were

mounted and imaged on an Axioskop Zeiss microscope with a Jenoptik/

Jena ProgRes C14 camera.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, eight

figures, one table, and four movies and can be found with this article online

at http://www.cell.com/supplemental/S0092-8674(08)01114-8.
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