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Phosphorylation Networks
Regulating JNK Activity in Diverse
Genetic Backgrounds
Chris Bakal,1,2*† Rune Linding,3* Flora Llense,4* Elleard Heffern,2 Enrique Martin-Blanco,4
Tony Pawson,5 Norbert Perrimon1,2

Cellular signaling networks have evolved to enable swift and accurate responses, even in the face
of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that
regulate different biological processes. Moreover, although classical screening approaches have
succeeded in providing parts lists of the essential components of signaling networks, they typically
do not provide much insight into the hierarchical and functional relations that exist among these
components. We describe a high-throughput screen in which we used RNA interference to
systematically inhibit two genes simultaneously in 17,724 combinations to identify regulators of
Drosophila JUN NH2-terminal kinase (JNK). Using both genetic and phosphoproteomics data,
we then implemented an integrative network algorithm to construct a JNK phosphorylation network,
which provides structural and mechanistic insights into the systems architecture of JNK signaling.

Signaling networks, especially those main-
taining cell viability and proliferation in re-
sponse to environmental fluctuations and

stress, may be more robust to perturbation than
others (1). One signaling network dedicated to
maintaining cell, tissue, and organism fidelity in
the face of cellular stress involves stress-activated
protein kinases (SAPKs), also known as JUN
NH2-terminal kinases (JNKs) (2). Classical in
vivo genetic approaches in Drosophila have
identified a highly conserved pathway consisting
of a single JNK, a JNK-kinase (JNKK), and a
mixed-lineage kinase (MLK) that serves as a
JNKK-kinase (3), but little is known as to how
other signaling networks feed into this canonical
cascade. To expand our understanding of JNK
regulation, we conducted cell-based RNA inter-
ference (RNAi) screens to systematically investi-
gate JNK activity in various genetic backgrounds.
Furthermore, to gain insight into the systems
architecture of JNK signaling, we used a proba-
bilistic computational framework to reconstruct a
JNK phosphorylation network among compo-
nents identified in the screen on the basis of
phosphoproteomics data.

To measure JNK activity in live migratory
Drosophila cells, we devised an RNAi screen
based on a dJUN-FRET sensor (fluorescence
resonance energy transfer or FRET). dJUN-
FRET is a single polypeptide composed of a
modified Drosophila JUN phosphorylation do-
main and a FHA phosphothreonine-binding mod-

ule (4) separated by a flexible linker and flanked
by a cyan fluorescent protein (CFP) donor and
yellow fluorescent protein (YFP) acceptor mod-
ules (Fig. 1A). Drosophila BG-2 migratory cells
were transfected with a plasmid that drives dJUN-
FRET expression from an actin promoter and, 2
days later, were transfected with a set of 1565
double-stranded RNAs (dsRNAs) targeting all
251 known Drosophila kinases, 86 phosphatases
(PPases), and predicted kinases and PPases, as

well as regulatory subunits and adapters (the “KP”
set). JNK activity in single cells was determined
by calculating the ratio of FRETsignal (generated
by FRET between YFP and CFP) to the level of
CFP intensity (which provides the baseline level
of dJUN-FRETexpression in each cell regardless
of JNK activity) within each cell boundary. A
mean ratio is then derived for all cells treated with
a particular dsRNA (Fig. 1B). The mean fold
change in dJUN-FRET reporter activity for
16,404 control wells was 1.00 T 0.04 (SD); how-
ever, in a screen of the KP set, multiple dsRNAs
targeting JNK (Z = –2.06 and –2.05) and MLK
(Z = –5.06, –2.60, and –2.13) produced significant
decreases in dJUN-FRET reporter activity (5).
Moreover, dsRNAs targeting the JNK PPase
puckered ( puc) (6) resulted in significant increases
in reporter activity (Z = 2.13, 3.44, and 4.81),
consistent with the role of Puc as a negative
regulator of JNK (Fig. 1C). In the KP screen, we
identified 24 genes (5% of genes tested) as
putative JNK regulators and reidentified the 6
out of 7 positive and negative JNK regulators
previously identified in vivo (3) (Fig. 1D). Al-
though the KP screen identified both previously
known and novel JNK components and regu-
lators, the results are notable in the genes that the
screen failed to isolate. For example, the only
Drosophila JNKK, encoded by the hemipterous
gene (7), was not identified in the KP screen.
Furthermore, although ERK emerged from the
KP screen as a JNK suppressor because of ERK’s
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Fig. 1. Overview of FRET-based screen for JNK regulators. (A) Schematic of dJUN-FRET construct. (B)
Representative image of dJUN-FRET transfected BG-2 cells and image analysis protocol. (C) Graph of Z
scores for individual dsRNAs in KP screen. (D) List of 11 JNK suppressors and 13 enhancers identified in
the KP screen. Genes are considered JNK regulators if two or more independent dsRNAs result in mean
changes in dJUN-FRET activity above or below a Z score of +2.0 or –2.0, respectively. Circles represent the
number of dsRNAs tested per gene; filled circles represent dsRNAs that contribute to the average Z score.
Genes in bold indicate previously described JNK regulators (3).

www.sciencemag.org SCIENCE VOL 322 17 OCTOBER 2008 453

REPORTS

 o
n 

O
ct

ob
er

 2
0,

 2
00

8 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


potential positive effects on puc transcription
(fig. S1), we did not identify dsRNAs targeting
other components of the ERK pathway. A high
false-negative rate appears to be present in this
genetic screen; therefore, we developed a combi-
natorial strategy to further enhance the sensitivity
of the screen.

We performed 12 different sensitized screens
in which we incubated cells with dsRNAs tar-
geting a “query” gene in combination with
dsRNAs of the KP set. In choosing query genes,
we focused primarily on components of Rho gua-
nosine triphosphatase (GTPase) signaling, such
as Rac1, Cdc42, the Rho guanine nucleotide ex-
change factor still-life (sif ), and p190RhoGAP
(GTPase-activating protein), because Rho activity
couples JNK activation to a number of upstream
signaling events (3). We also sensitized cells by
targeting canonical JNK components, such as
JNK, puc, andMLK; other strong candidates from
the KP screen, such as ERK; and genes, such as
AKT, PTEN, hippo, and VHL, whose inhibition
could result in the activation stress pathways even
though they were themselves not identified in the
KP screen (4). Genes were then identified as
likely JNK regulators if two or more independent
dsRNAs resulted in average increases or de-
creases in dJUN-FRET reporter activity in each
screen, and we assigned a significance score
based on howmany total dsRNAswere tested for
each gene across all screens (4, 26). For example,
a gene targeted by two to four dsRNAs was
considered a JNK regulator if isolated in two or
more screens, but a gene targeted by five to seven
dsRNAs must be isolated in three or more screens
to be included in the list of high-confidence regu-
lators. No genes were isolated in the background
of JNK inhibition (Fig. 2), which showed that

increases or decreases in dJUN-FRET reporter
activity in both unmodified and modified back-
grounds are JNK-dependent. Using this combi-
natorial approach, we identified 55 new JNK
suppressors and enhancers in a test of 17,724
dsRNAcombinations, which, togetherwith results
from the nonsensitized initial screen, provide a list
of 79 likely JNK regulators (17% of the genes
tested) (26). We validated some of the hits iden-
tified in multiple screens as bona fide JNK regu-
lators by quantifying mRNA abundance of the
JNK-specific transcriptional target MMP1 (8, 9)
after dsRNA-mediated inhibition of candidate
genes by quantitative real-time polymerase chain
reaction (fig. S2).

We wished to obtain insight into why deple-
tion of certain kinases and PPases had effects
in both unmodified and modified backgrounds,
while others were isolated only in sensitized
contexts. Therefore, we integrated our genetic
screen with phosphoproteomics data and compu-
tational models of kinase specificity to derive
networks on the basis of all of these experimen-
tal sources using the NetworKIN algorithm (10).
NetworKIN was deployed on more than 10,000
unique high-confidence phosphorylation sites
identified in a recent mass spectrometry study
of Drosophila cells (11). This resulted in an
initial network that was subsequently overlaid
with the genetic hits in order to derive a model
of the JNK phosphorylation network (Fig. 3)
(25, 26). Last, to determine which phosphoryl-
ation events make functional contributions to
JNK signaling, we looked in data sets derived
from combinatorial screens for epistatic inter-
actions among kinases and substrates and per-
formed hierarchical clustering of mean Z scores
for components of the JNK phosphorylation

network across several combinatorial RNAi
screens to look for shared patterns of genetic
interaction (Fig. 4). Thus, through integrating
genetic and phosphoproteomics data using a com-
putational framework, we undertook a systems-
level strategy to describe the protein networks
underlying genetic interactions.

JNK regulators identified in all screens could
be broadly grouped into different classes on the
basis of previously described biological func-
tions and/or structural similarity of protein products
(Fig. 3). Specifically, we identified a number of
protein and lipid kinases involved in axon guid-
ance and cell migration, such as FER (12),
Ptp69d (13), otk (14, 15), thickveins (16), RET
(17), wunen2 (18), GSK3 (19), PDK1 (20), and
JAK (21).We also identified genes encoding com-
ponents of apicobasal polarity complexes, such
as ZO-1, Caki, Magi, and discs large 1 (dlg1),
largely as JNK suppressors (22), which is con-
sistent with in vivo studies demonstrating unre-
strained JNK activation associated with breakdown
of polarity in backgrounds of hyperactivated
Ras/ERK signaling (8, 23). Furthermore, our re-
sults implicate theWarts-Hippo complex (24) as a
potential link between JNK activity and the
remodeling of cytoskeletal structures (Fig. 3).
NetworKIN predicts that Hippo-mediated activa-
tion of JNK can occur through phosphorylation of
MLK and that Hippo is also a direct target for
JNK, which suggests that a feedback loop exists
between JNK and Warts-Hippo signaling. No-
tably, we also predict Dlg1 to be extensively
phosphorylated by a number of kinases in the
JNK network, including JNK itself (Fig. 3).
This suggests that JNK, and other kinases such as
ERK and CDK2, can act upstream of Dlg1 to
remodel or dismantle polarized cell-cell adhesion
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complexes, which, in turn, promote the morpho-
logical changes required to complete division,
migration, or extrusion from tissue during apo-
ptosis. Compelling support of this idea is pro-
vided by the fact that mammalian Dlg1 is
regulated by phosphorylation, is a substrate of
JNKs, and becomes highly phosphorylated dur-
ing mitosis (25). These findings highlight the
ability of integrated genetic and computational
approaches to provide systems-level insight into
the complex regulation of JNK activity.

In summary, we demonstrate that combi-
natorial RNAi screening is a powerful strategy
to reduce the false-negatives present in current
screens and reveals functions for a large fraction of
genes. Moreover, our data-integrative–powered
approach unraveled both mechanistic and hierar-
chical associations of components in the JNK

regulatory system and provides an invaluable
starting point for understanding the genetic
interactions and signaling networks that underpin
various diseases.
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Higher-Order Cellular
Information Processing with
Synthetic RNA Devices
Maung Nyan Win and Christina D. Smolke*

The engineering of biological systems is anticipated to provide effective solutions to challenges
that include energy and food production, environmental quality, and health and medicine. Our
ability to transmit information to and from living systems, and to process and act on information
inside cells, is critical to advancing the scale and complexity at which we can engineer, manipulate,
and probe biological systems. We developed a general approach for assembling RNA devices that can
execute higher-order cellular information processing operations from standard components. The
engineered devices can function as logic gates (AND, NOR, NAND, or OR gates) and signal filters,
and exhibit cooperativity. RNA devices process and transmit molecular inputs to targeted protein
outputs, linking computation to gene expression and thus the potential to control cellular function.

Genetically encoded technologies that per-
form information processing, communi-
cation, and control operations are needed

to produce new cellular functions from the di-
verse molecular information encoded in the var-
ious properties of small molecules, proteins, and
RNA present within biological systems. For ex-

ample, genetic logic gates that process and trans-
late multiple molecular inputs into prescribed
amounts of signaling through new molecular out-
puts would enable the integration of diverse en-
vironmental and intracellular signals to a smaller
number of phenotypic responses. Basic operations
such as signal filtering, amplification, and restora-
tion would also enable expanded manipulation of
molecular information through cellular networks.

Molecular information processing systems
have been constructed that perform computation
with biological substrates. For example, protein-
based systems can perform logic operations to

convert molecular inputs to regulated transcrip-
tional events (1–4). Information processing sys-
tems that perform computation on small-molecule
and nucleic acid inputs can be constructed from
nucleic acid components (5–11). RNA-based sys-
tems can process single inputs to regulated gene
expression events (12, 13) and integrate multiple
regulatory RNAs for combinatorial gene regu-
lation (14, 15). We sought to combine the rich
capability of nucleic acids for performing infor-
mation processing, transduction, and control op-
erations with the design advantages expected
from the relative ease by which RNA structures
can be modeled and designed (16, 17).

We proposed a framework for the construction
of single input–single output RNA devices (18)
based on the assembly of three functional compo-
nents: a sensor component, made of an RNA
aptamer (19); an actuator component, made of a
hammerhead ribozyme (20); and a transmitter
component, made of a sequence that couples the
sensor and actuator components. The resulting
devices distribute between two primary conforma-
tions: one in which the input cannot bind the sensor,
and the other in which the input can bind the sensor
as a result of competitive hybridization events
within the transmitter component. Input binding
shifts the distribution to favor the input-bound
conformation as a function of increasing input
concentration and is translated to a change in the
activity of the actuator, where a “ribozyme-active”
state results in self-cleavage of the ribozyme (21).

Division of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 East California Boulevard,
MC 210-41, Pasadena, CA 91125, USA.

*To whom correspondence should be addressed. E-mail:
smolke@cheme.caltech.edu

Fig. 4. Determining functional interactions among
kinases and substrates in the JNK network. Hier-
archical clustering of average dJUN-FRET Z scores
after inhibition by RNAi of components in the JNK
phosphorylation network in unmodified (KP), as
well as in backgrounds deficient in ERK, hippo,MLK,
or puc. Functional interactions are defined by the
detection of an epistatic interaction between kinase
and substrate (white boxes) or when the average Z
scores of kinases and substrate dsRNAs across all
sensitized screens cluster together with a cluster
distance metric (an average of uncentered Pearson
correlation coefficients) greater than 0.67 (shaded
boxes). For example, whereas typically ERK acts as a
JNK suppressor, ERK RNAi in MLK-deficient
background (asterisk) leads to a notable decrease
in dJUN-FRET reporter activity, which suggests that
the ERK can act upstream of JNK via predicted
phosphorylation of MLK and JNKK. Alternatively,
GSK3 is predicted to target MLK, JNKK, and Dlg1,
but only Z scores for GSK3, MLK, or JNKK dsRNAs
cluster across screens, which suggests that GSK3-
mediated phosphorylation of MLK and JNKK, but
not Dlg1, is functionally relevant to JNK signaling.
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