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Chlamydia spp. are intracellular obligate bacterial pathogens that infect a wide range of host cells. Here, we show that
C. caviae enters, replicates, and performs a complete developmental cycle in Drosophila SL2 cells. Using this model
system, we have performed a genome-wide RNA interference screen and identified 54 factors that, when depleted,
inhibit C. caviae infection. By testing the effect of each candidate’s knock down on L. monocytogenes infection, we have
identified 31 candidates presumably specific of C. caviae infection. We found factors expected to have an effect on
Chlamydia infection, such as heparansulfate glycosaminoglycans and actin and microtubule remodeling factors. We
also identified factors that were not previously described as involved in Chlamydia infection. For instance, we
identified members of the Tim-Tom complex, a multiprotein complex involved in the recognition and import of
nuclear-encoded proteins to the mitochondria, as required for C. caviae infection of Drosophila cells. Finally, we
confirmed that depletion of either Tom40 or Tom22 also reduced C. caviae infection in mammalian cells. However, C.
trachomatis infection was not affected, suggesting that the mechanism involved is C. caviae specific.
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Introduction

Chlamydia spp. are Gram-negative, obligate, intracellular
bacterial pathogens that infect a wide range of hosts and
cause various diseases. Three species infect humans. C.
trachomatis is the leading cause of preventable blindness in
developing countries [1] and the most common cause of
bacterial sexually transmitted disease in developed countries
[2]. Infection with C. pneumoniae leads to pneumonia, and in
the past 10 years, C. pneumoniae has been implicated in
atherosclerosis [3] and Alzheimer disease [4], although the
direct links between the bacteria and these diseases is still
unclear. C. psittaci infects various animals and is responsible
for pneumonia in humans [5]. Many Chlamydia species are
recognized as animal pathogens [6]. C. muridarum infects mice
and hamsters. C. suis, C. abortus, and C. felis infect swine,
ruminants, and house cats, respectively. Finally, infection
with C. caviae in guinea pig resembles ocular and genital
infections caused by C. trachomatis in humans.

Chlamydia are characterized by a biphasic developmental
cycle that occurs exclusively in the host cell. The bacteria
alternate between an infectious, metabolically inactive form
called elementary body (EB) that is characterized by a
condensed nucleoid, and an intracellular, metabolically
active form named reticulate body (RB). Once internalized,
Chlamydia resides in a membrane-bound compartment,
named the inclusion. Shortly after uptake, an uncharacter-
ized switch occurs, leading to the differentiation of EBs into
RBs. The RBs then start to replicate until the inclusion
occupies a large part of the cytosol of the host cells. At the
end of the cycle, which lasts 2 to 3 d depending upon the
species, the RBs differentiate back into EBs. The host cell is

lysed, leading to the release of EBs and the infection of
neighboring cells [7,8].
Both bacterial and host factors contribute to the bio-

genesis of the inclusion, but little is known about the
mechanisms involved. Chlamydia spp. possess a type III
secretion system (TTSS) responsible for the secretion of
effector proteins in the cytoplasm of the host cell. An
example of such effectors is the family of highly hydrophobic
Inc proteins. Some of them are present on the surface of the
inclusion membrane and are thought, in combination with
other bacterial effector proteins, to modify the host cell
environment and allow bacterial replication [9–13]. During
the cycle, Chlamydia targets various host cell functions in
order to establish its replication niche and disseminate from
cell to cell [14]. The bacteria acquire amino acids, nucleo-
tides, and other precursors from the host cell. The
mechanism of chlamydial entry is not well understood, but
among others, heparan sulfate proteoglycans, tyrosine
phosphorylation of the bacterial effector Tarp, and activa-
tion of small GTPases and signaling pathways leading to actin
remodeling are involved in this process [15]. Once internal-
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ized, Chlamydia directs the trafficking of the nascent inclusion
to a perinuclear localization via a mechanism involving
microfilaments, microtubules, and the motor protein dynein
[16]. The inclusion does not interact with the endocytic
pathway [14,17]. However, it intercepts exocytic vesicles and
lipids from the Golgi [18]. Some Rab GTPases are recruited
to the inclusion membrane [19], and a recent study suggests
that Chlamydia targets host lipid droplets to enhance its
intracellular survival and replication [20]. Finally, Chlamydia
has the ability to modulate the programmed cell death
pathway of infected cells [21,22]. During the early stage of
infection, the infected cells are resistant to apoptosis signals
but, by the end of Chlamydia developmental cycle, the
programmed cell death pathway is induced, presumably to
facilitate the release of the bacteria and the initiation of the
next round of infection.

In the past few years, Drosophila has been established as a
useful model to dissect microbial pathogenesis [23]. Among
others, Pseudomonas aeroginosa [24], Mycobacterium marinum [25],
Salmonella [26], and Listeria monocytogenes [27] successfully
infect Drosophila adult flies. Host–pathogen interaction can
also be analyzed in Drosophila S2 cells, which resemble
embryonic hemocytes/macrophages. For example, the intra-
cellular replication of L. monocytogenes [27,28] or Legionella
pneumophila [29] in Drosophila cell lines is similar to the one
observed in mammalian cells, and the first steps, but not the
latest (RB to EB differentiation), of C. trachomatis devel-
opmental cycle can be observed in Drosophila cells [30].

An important discovery was made by Clemens et al., who
reported that the simple addition of dsRNA to Drosophila cells
in culture reduces or eliminates the expression of target
genes by RNA interference (RNAi), thus efficiently phenoco-
pying loss-of-function mutations [31]. Combined with the
sequence of the Drosophila genome, it has opened a new area
of research, allowing scientists to test the involvement of any
Drosophila gene in a given cellular process [32,33]. Several
screens have already shed light on various cellular processes
such as cell viability [33], cytokinesis [34], wnt signaling [35],

JAK/STAT signaling [36], and mechanisms of host–pathogen
interaction, including Listeria and Mycobacterium pathogenesis
[37–39], Candida albicans phagocytosis [40], and L. pneumophila
exploitation of the early secretory pathway [29].
We have investigated the possibility of using Drosophila

Schneider’s Line 2 (SL2) cells [41] as a model system to dissect
Chlamydia pathogenesis. We have shown that C. caviae enters,
replicates, and performs a complete developmental cycle in
Drosophila SL2 cells. We performed a genome-wide RNAi
screen and identified 54 factors that, when depleted, inhibit
C. caviae infection in Drosophila cells. We identified factors
expected to have an effect on Chlamydia infection, but most
importantly we also identified uncovered host factors,
including components of the Tim-Tom complex. Clearly
validating our approach, we showed that depletion of either
Tom40 or Tom22 also reduced C. caviae infection in
mammalian cells. We discuss how further investigation of
the identified candidates may shed light on the molecular
mechanisms involved in Chlamydia pathogenesis.

Materials and Methods

Cell Lines and Bacterial Strains
Drosophila SL2 cells [41] were cultured at 25 8C in Schneider

media (Invitrogen) supplemented with 10% heat inactivated
FBS (JRH).
HeLa 229 cells were cultured at 37 8C with 5% CO2 in

DMEM high glucose (Invitrogen) supplemented with 10%
heat inactivated FBS (Invitrogen).
C. caviae, the guinea pig model of genital and ocular

infection of C. trachomatis, were obtained from R. Rank
(University of Arkansas). C. trachomatis Lymphogranuloma
venerum, Type II, were obtained from ATCC (VR-902B).
SL2 cell infection with GFP-expressing L. monocytogenes was

conducted as previously described [37].

Chlamydia Propagation and Infection
For propagation, HeLa 229 were incubated with C. caviae or

C. trachomatis for 48 h in the presence of 2 lg/ml cyclo-
heximide (Sigma). The infected cells were centrifuged (10
min, 1,000 rpm) and the cell pellet was resuspended in SPG
buffer (218 mM sucrose, 3.76 mM KH2PO4, 7.1 mM KH2PO4,
4,9 mM glutamate [pH 7.4]). The cells were broken by passing
them through a 261/2 gauge needle and the unbroken cells and
nuclei were pelleted by centrifugation (10 min, 1,000 rpm).
The supernatant was centrifuged (30 min, 12,000 rpm), and
the bacterial pellets were resuspended in SPG buffer and
stored at �70 8C.
For Drosophila SL2 cell infection, C. caviae were diluted in

Schneider media supplemented with 10% heat inactivated
FBS and incubated with the cells at 30 8C for the indicated
time. For HeLa 229 cell infection, C. caviae or C. trachomatis
were diluted in DMEM high glucose supplemented with 10%
heat inactivated FBS and incubated with the cells at 37 8C in
the presence of 5% CO2. One hour post infection, the
bacteria were washed away and the cells were incubated with
fresh media for the indicated length of time at 37 8C in the
presence of 5% CO2.

Antibodies
The following primary antibodies were used: (FITC)-

conjugated C5þC8 monoclonal antibodies directed against
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Author Summary

Chlamydia spp. are intracellular bacterial pathogens that infect a
wide range of hosts and cause various diseases, including
preventable blindness in developing countries, sexually transmitted
disease, and pneumonia. Chlamydia spp. are able to establish their
replication niche inside the host cell, residing in a membrane-bound
compartment that serves as a protector shield against immune
surveillance and antimicrobial agents but also acts as a ‘‘filter’’ to
exchange factors with the host cell. Despite the primary importance
of Chlamydia for human health, little is known about the
mechanisms underlying the infection process. The study of
Chlamydia pathogenesis is challenging because Chlamydia spp.
are not amenable to genetic manipulation and it is difficult to
conduct extensive genetic approaches in the mammalian host. To
circumvent these difficulties, we have used Drosophila cells to model
Chlamydia infection. We conducted a genome-wide RNA interfer-
ence screen and identified host factors that, when depleted, reduce
Chlamydia infection. Validating our approach, we further showed
that the identified factors were also required for infection in
mammalian cells. This work will help us better understand the
complex interaction between Chlamydia and its host and potentially
identify novel targets for therapeutic treatment.



Chlamydia MOMP and LPS (1:300, Argene), rabbit polyclonal
anti IncA (1:200, [42]), guinea pig polyclonal antibody
directed against C. caviae EBs (Kind gift of R. Rank, University
of Arkansas), rabbit polyclonal antibody anti-hTom40 (1:500,
Kind gift of M. Ryan, La Trobe University, Australia [43]),
mouse monoclonal anti-Tom22 (1:2000, Sigma, clone 1C9–2),
and rabbit polyclonal anti-actin (1:10,000, Sigma A2066).

The following secondary antibodies were used: goat anti-
rabbit AlexaFluor 594 antibody (1:1,000, Molecular Probes),
fluorescein (FITC)-conjugated AffiniPure donkey anti-guinea
pig IgG (1:500, Jackson ImmunoResearch), peroxidase-con-
jugated goat anti-rabbit IgG (1:10,000, Jackson ImmunoR-
esearch), and peroxidase-conjugated goat anti-mouse IgG
(1:10,000, Jackson ImmunoResearch).

Immunofluorescence
At the indicated time, the cells were fixed for 30 min in PBS

containing 4% paraformaldehyde. Immunostainings were
performed at room temperature. Antibodies were diluted in
PBS containing 0.16 lg/ml Hoechst (Molecular Probes), 0.1%
BSA, and 0.05% saponin. Samples were washed with PBS
containing 0.05% saponin, and a final PBS wash was
performed before examination under an epifluorescence
microscope.

Electron Microscopy
Drosophila SL2 cells (108) were incubated at 30 8C with C.

caviae (MOI ; 5), fixed 45 h post infection by addition of
0.125% glutaraldehyde / 2% paraformaldehyde in 0.1 M
phosphate buffer (pH 7.4), postfixed with osmium tetroxide,
dehydrated in ethanol, embedded in epoxy resin, sectioned,
stained with 1% uranyl acetate, and examined by electron
microscopy [44].

HeLa 229 cells cultured on coverslips were fixed in 2.5%
glutaraldehyde in 0.1 M sodium cacodylate (pH 7.4) for 1 h at
room temperature, postfixed in 1% osmium tetroxide in the
same buffer for 1 h at room temperature, stained in 2%
uranyl acetate in 50 mM sodium maleate (pH 5.2) for 1 h at
room temperature, dehydrated in ethanol, and embedded in
Embed 812 epoxy resin (all reagents from Electron Micro-
scopy Sciences). Ultra-thin sections (60 nm) were obtained on
a Reichert ultra microtome, transferred onto formvar- and
carbon-coated hexagonal nickel grids, stained with 1% lead
citrate and 2% uranyl acetate, and examined in a Tecnai 12
Biotwin electron microscope (FEI Company). Random images
of vacuoles were recorded at a magnification of 11,500 using a
Morada CCD camera (Olympus Soft Imaging Solutions). For
quantitation of the percentage of vacuolar membrane or
nuclear envelope covered by mitochondria, a grid with a
distance of 560 nm between lines was superposed on top of
the images, and the number of intersections of vertical and
horizontal lines with membranes counted. The number of
intersections of these lines with mitochondria was also
counted, but mitochondria were counted as being associated
with the vacuolar or nuclear membrane only if the distance
between the point of intersection of the grid with the
mitochondrial outer membrane and the closest vacuolar or
nuclear membrane was 50 nm or less. The ratio of the
number of intersection with mitochondria divided by the
number of intersections with the vacuolar or nuclear
membrane gives an estimate of the percentage of these
membranes covered by mitochondria.

Infectious Progeny Production in Drosophila Cells
Drosophila SL2 cells (108) were incubated at 30 8C with C.

caviae. At the indicated time, the infected cells were processed
as described above for Chlamydia propagation. The bacterial
pellets were resuspended in 100 ll of SPG. To test for the
presence of infectious C. caviae in the preparation, 300 ll of a
1:100 dilution were incubated with 6.104 HeLa cells seeded
onto coverslips at 37 8C in the presence of 5% CO2. After 1 h,
the bacterial suspension was replaced by 500 ll of fresh
medium. The cells were fixed 24 h post infection, stained, and
the percentage of cells containing a large inclusion was
determined by visual inspection using an epifluorescence
microscope.

Infectious Progeny Production in HeLa 229 Cells
The infection was performed in 384-well format such that

75% of the cells were infected. At the indicated time, the
infected cells were collected and transferred to an eppendorf
tube containing 100 ll of glass beads (Sigma, G8772) and 300
ll of DMEM high glucose supplemented with 10% FBS. The
cells were broken by vortexing for 1 min, and 40 ll of
dilutions of the lysat were added to 4.103 HeLa 229 cells
seeded in 384-well plate. After 1 h at 37 8C in the presence of
5% CO2, the lysat was washed away and 40 ll of fresh media
was added to each well. The cells were fixed and stained 24 h
post infection and the percentage of infected cells was
determined.

Primary Screen
Two sets of 42 384-well plates containing 0.25 lg of dsRNA

per well were provided by the Drosophila RNAi Screening
Center (Harvard Medical School, Boston, Massachusetts,
http://www.flyrnai.org). Drosophila SL2 cells (2.104), resus-
pended in 20 ll of serum-free Schneider media, were seeded
in each well and incubated 1 h at 25 8C before the addition of
20 ll of Schneider media containing serum. After 3.5 d, the
cells were infected by addition of 10 ll of Schneider media
containing C. caviae. The cells were centrifuged for 1 min at
1,000 rpm and incubated at 30 8C for 48 h. The cells were
processed for immunofluorescence by using the DNA dye
Hoeschst and FITC-conjugated C5þC8 monoclonal antibod-
ies. An automated microscope was used to automatically track,
focus, and capture fluorescent images of the cells within each
well across an entire plate. One set of images was captured in
the blue channel to detect the cells’ nuclei and one set in the
green channel to detect Chlamydia. The qualitative analysis
of the image data was done by visual inspection.

dsRNA Synthesis
dsRNA used for validation and secondary assays were

synthesized using a MEGAscript High Yield transcription kit
(Ambion) according to the recommendation of the manu-
facturer.

Tom40 and Tom22 siRNA in HeLa 229 Cells
The protocol used for siRNA transfection was adapted

from Dharmacon’s HeLa cells transfection protocol. One
volume of siRNA buffer containing 200 nM of siRNA was
incubated with 1 volume of serum-free DMEM high glucose
containing 5 ll/ml DharmaFECT-1 transfection reagent for
20 min at room temperature. Two volumes of DMEM high
glucose supplemented with 20% FBS containing 5.104/ml
HeLa 229 cells were added to each well and the cells were
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incubated at 37 8C with 5% CO2 for 3 d. The total volume was
40 ll in 384-well and 400 ll in 24-well. In 24-well format the
transfection mix was replaced by 500 ll of fresh media 24 h
post transfection.

Assay for Tom40 and Tom22 Protein Depletion
The knock down of Tom40 or Tom22 was performed as

described above in 24-well plate. Three days post trans-
fection, the cells were harvested in 100 ll of protein sample
buffer and 20 ll of cell lysates were run on SDS-PAGE gels
and analyzed by western blot using HPR-conjugated secon-
dary antibodies and Amersham ECL western blotting
detection reagents.

Computer Assisted Image Analysis
Images were acquired using the Metamorph software

(Molecular Devices). The integrated morphometry analysis
module was used to quantify the size of C. caviae inclusions.

Results

C. caviae Infect and Replicate in Drosophila SL2 Cells
In an attempt to use Drosophila as a model system to study

Chlamydia pathogenesis, we investigated C. caviae replication
in Drosophila SL2 cells. For this purpose, 80% confluent
Drosophila SL2 cells cultured in 96-well dish were incubated
with C. caviae. At various times post infection, the cells were
transferred to Concanavalin A–coated coverslips (Sigma, 2
mg/ml) in Schneider media for 2 h. The samples were then
fixed and stained with the DNA dye Hoescht and a FITC-
conjugated antibody directed against Chlamydia to stain the
inclusion.

As shown in Figure 1, C. caviae is able to infect and replicate
in Drosophila SL2 cells. Although most of the cells contained at
least one bacterium 1 h post infection, only 20% to 30% of
the cells had an inclusion 48 h post infection (not shown),
suggesting that some bacteria were actually cleared in the
phagocytic SL2 cells. However, when the bacteria were
successful in establishing their niche, the infected cells
displayed a perinuclear inclusion whose size increased
between 24 and 72 h post infection. At 96 h post infection,
the size of the inclusions was more heterogeneous (not
shown) and some cells displayed disrupted inclusions,
suggesting that the developmental cycle was completed and
that reinfection was occurring between 72 and 96 h post
infection.

C. caviae Complete a Full Developmental Cycle in
Drosophila SL2 Cells

We next determined whether C. caviae were undergoing a
full developmental cycle in Drosophila SL2 cells. To this end,
we determined whether the different developmental forms of
C. caviae were present in the inclusion by electron micro-
scopy. As shown in Figure 2A, 45 h post infection the bacteria
were found in a membrane-bound compartment that
occupies most of the cytosolic space. The inclusions mainly
contained RBs and intermediate bodies (IBs) in the process of
differentiating to EBs and are characterized by their DNA
condensation stage, but they also contained some bacteria
with an EB morphology (Figure 2B), suggesting that in
Drosophila SL2 cells, RBs start to differentiate back to EBs
45 h post infection.

In order to demonstrate that infectious progeny was

produced, C. caviae harvested from Drosophila SL2 cells at
different times post infection were used to infect HeLa cells
(Materials and Methods; Figure 2C). When C. caviae were
harvested 3 h post SL2 infection, 10% of the HeLa cells
displayed an inclusion. This number decreased to less than
5% when the bacteria were isolated 24 or 48 h post infection,
suggesting that a substantial amount of bacteria were either
cleared or had differentiated into non-infectious RBs. In
contrast, 12.5% and 19% of the HeLa cells contained a large
inclusion when the bacteria were harvested 72 and 96 h post
SL2 infection, respectively. After 96 h, the number of infected
HeLa cells remained constant. These results indicate that
infectious forms of C. caviae are produced in Drosophila SL2
cells. Moreover, they are in agreement with the immuno-
fluorescence (Figure 1) and electron microscopy (Figure 2A
and 2B) data and confirm that 48 h post infection of
Drosophila SL2 cells, the inclusion mainly contains RBs and
IBs, whereas EBs are produced in the next 24 h. Taken
together, these data show that C. caviae undergo a full
developmental cycle in Drosophila SL2 cells and suggest that
the cycle lasts 72 to 96 h.

C. caviae TTSS Is Functional in Drosophila SL2 Cells
The TTSS of C. caviae was functional in Drosophila SL2 cells

as shown by determining the presence of the Inc family
protein, IncA, on the C. caviae inclusion membrane (Figure 3).
Drosophila SL2 cells were fixed 48 h post infection with C.
caviae, stained with the DNA dye Hoescht to visualize the
nuclei (N) and the inclusions (Inc), and antibodies directed
against IncA. A ring-like signal (IncA, red) that surrounded
the inclusion (Inc, blue) was observed, indicating that, in
Drosophila SL2 cells, the TTSS of C. caviae is functional and
that TTS substrates such as IncA, are delivered to the
inclusion membrane.

Host Factors That, When Depleted, Inhibit C. caviae
Infection
Sixteen thousand Drosophila genes were individually

knocked down by RNAi and screened for their ability to
reduce C. caviae infection of Drosophila SL2 cells. The assay was
performed as follows (Materials and Methods; Figure 4A).
After 3.5 d of RNAi treatment, the Drosophila SL2 cells were
incubated with C. caviae for 48 h. The infected cells were fixed
and stained with a DNA dye and a Chlamydia-specific FITC-
conjugated antibody. An automated microscope was used to
capture fluorescence images that were subsequently analyzed
by visual inspection. The primary screen was performed in
duplicate. We identified 162 candidates that, when depleted,
reduced C. caviae infection (Table S1). Figure 4B is repre-
sentative of the phenotype observed: few cells displayed wild-
type size inclusion (middle top panel) and the number of
infected cells, as well as the size of the inclusion, was largely
reduced (middle bottom panel). The candidates were grouped
into 14 functional categories (Figure 5): miscellaneous (32),
unknown (32), metabolism (18), transcription (14), vesicular
trafficking (12), cytoskeleton (9), mitochondria (8), trans-
porter (8), kinase and phosphatase (7), chromatin organiza-
tion (5), endosome and lysosome (5), protein biosynthesis (5),
RNA processing (4), and cell cycle (3).
The dsRNA targeting most of the candidates of the

miscellaneous, metabolism, vesicular trafficking, cytoskeleton,
mitochondria, transporter, kinase and phosphatase, and
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endosome and lysosome categories were resynthesized to
confirm the phenotype observed in the primary screen (Table
S1). Out of the 100 candidates retested, the phenotype was
confirmed for 54 candidates in at least two out of three
replicates (Table 1). The validation rate varied among the

categories: miscellaneous (40%), metabolism (47%), vesicular
trafficking (75%), cytoskeleton (75%), mitochondria (67%),
transporter (37%), kinase and phosphatase (57%), and endo-
some and lysosome (100%).
In an attempt to assay for Chlamydia specificity, the knock

Figure 1. C. caviae Replicate in Drosophila SL2 Cells

Immunofluorescence images of Drosophila SL2 cells incubated for 1, 24, 48, 72, and 96 h with C. caviae. After fixation, the samples were stained with the
DNA dye Hoechst (DNA, blue) and a FITC-conjugated monoclonal C5þC8 antibody directed against MOMP and LPS (C. caviae, green). Merge: overlay of
the two images.
doi:10.1371/journal.ppat.0030155.g001
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down of the candidates was tested for the inhibition of L.
monocytogenes infection (Table 1). The knock down of most
vesicular trafficking (9/9), cytoskeleton (4/6), and endosome
and lysosome (5/5) candidates inhibited both C. caviae and L.
monocytogenes infection, and an equal number of kinase and
phosphatase candidates inhibited C. caviae or L. monocytogenes
infection. The knock down of most miscellaneous (11/13) and
metabolism (6/8) candidates and of all mitochondria (6/6) and
transporter (3/3) candidates inhibited C. caviae infection only.
These results suggest that the latter categories are likely to
represent candidates specifically involved in C. caviae infec-
tion.

Tom40 and Tom22 Depletion Reduce C. caviae Infection

in Mammalian Cells
The RNAi screen in Drosophila cells revealed that the

silencing of six mitochondrial genes inhibited C. caviae, but
not L. monocytogenes infection. Moreover, four out of the six
candidates were members of the mitochondrial membrane
translocase, a multiprotein complex involved in the recog-
nition and import of nuclear-encoded mitochondrial pro-
teins to the mitochondria [43,45]. Taken together, these
results suggested a specific role of this machinery for optimal
C. caviae infection in Drosophila cells. To address the relevance
of these findings in Chlamydia pathogenesis, this observation
was further investigated in mammalian cells.

Tom40 or Tom22 expression was knocked down in HeLa
229 cells using a mix of four siRNA duplexes directed against
their respective mRNA (ThermoFisher). In addition, each
siRNA was tested individually to rule out any potential off-
target effects. The depletion of either Tom40 or Tom22 was
assayed 3 d post transfection of the siRNAs by western blot
analysis. As shown in Figure 6A, both Tom40 and Tom22 were
efficiently depleted after incubation with the mix of four
siRNAs or with individual siRNA duplexes.
The effect of Tom40 or Tom22 depletion on C. caviae

infection was analyzed. HeLa 229 cells were incubated for 3 d
with either CDH1 siRNA control directed against E-Cadherin,
or Tom40 or Tom22 siRNAs pooled (mix), or individually (1,
2, 3, 4), infected with C. caviae for 24 h, and processed for
immunofluorescence. The corresponding low and high
magnification images are depicted in Figure 6B and 6C,
respectively. The nuclei were labeled with the DNA dye
Hoeschst (Figure 6B and 6C: left panel, DNA, blue) and the
inclusions were stained with a guinea pig polyclonal antibody
against C. caviae (Figure 6B and 6C: middle panels, C. caviae,
green). Although the number of infected cells was similar, the
inclusions appeared smaller upon Tom40 or Tom22 deple-
tion (compare CDH1 middle panels to Tom40 or Tom22
middle panels).
A computer-assisted analysis of the images was used to

quantify the size of the inclusions (Materials and Methods). In

Figure 2. C. caviae Undergo a Full Developmental Cycle in Drosophila SL2 Cells

(A) Electron micrograph of semi-thin sections (;70 nm) of Drosophila SL2 cells 45 h post infection with C. caviae. Black square: Area magnified and
shown in (B). Bar: 2 lm.
(B) Higher magnification of the bacteria of the C. caviae inclusion shown in (A). Bar: 500 nm.
(C) C. caviae were isolated from Drosophila SL2 cells 3, 24, 48, 72, 96, 120, and 144 h post infection and were used to infect HeLa cells for 24 h. The
percentage of HeLa cells that present an inclusion is shown.
doi:10.1371/journal.ppat.0030155.g002

Figure 3. C. caviae TTSS Is Functional in Drosophila SL2 Cells

Drosophila SL2 cells infected for 48 h with C. caviae, were stained with the DNA dye Hoechst (DNA, blue) and polyclonal antibodies directed against the
IncA proteins (IncA, red). Merge: overlay of the two images. N: nucleus; Inc: inclusion. Bars: 10 lm.
doi:10.1371/journal.ppat.0030155.g003
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the control situation, we determined that each inclusion
could be defined as a 10- to 150-lm2 object and 40% of the
inclusions were larger than 30 lm2. We defined 10- to 30-lm2

and 30- to 150-lm2 objects as small and large inclusions,
respectively. The impact of Tom40 or Tom22 knock down on
C. caviae ability to form large inclusions was analyzed (Figure
6D). A 5- to 3-fold reduction in the percentage of large
inclusions was observed upon depletion of either Tom40 or
Tom22, confirming the overall reduction in the size of the
inclusions and suggesting that upon Tom40 or Tom22
depletion, C. caviae intracellular growth is impaired.
Electron microscopy analysis of C. caviae inclusions in

control or Tom40 depleted cells confirmed the immuno-
fluorescence results. Although a mixed population of small
and large inclusions was observed 24 h post infection, the
overall size of Tom40 depleted cell inclusion was smaller
(Figure 7). In addition, RBs had already started to differ-
entiate back into EBs in control cells, and 85% of the
inclusions contained more than 25% EBs. In contrast,
although some IBs were present, very few EBs were visible
in Tom40-depleted cells, and only 25% of the inclusions
contained more than 25% EBs. This result suggested that, in
addition to a reduction in intracellular growth, differ-
entiation back into EBs is also lessened in Tom40-depleted
cells.

C. caviae, but Not C. trachomatis, Infectious Progeny
Production Is Impaired upon Tom40 and Tom22
Depletion in Mammalian Cells
The electron microscopy results suggested that RB differ-

entiation into EBs was reduced upon Tom40 or Tom22
depletion. We therefore investigated the production of
infectious progeny by Tom40- or Tom22-depleted cells. The
cells were incubated with the siRNA in pool or individually
for 3 d before incubation with C. caviae for 48 h to allow
completion of the developmental cycle. The infected cells
were collected, lysed with glass beads, and dilutions of the
lysate were used to infect fresh HeLa 229 cells (see Materials

Figure 5. Functional Categories of the 162 Candidates Identified in the

Primary Screen

Based on their predicted biological functions, the 162 candidates
identified in the primary screen were categorized in 14 functional
groups. The number surrounding the chart indicates the number of
candidates in each category. See Table S1 for the list of candidates.
doi:10.1371/journal.ppat.0030155.g005

Figure 4. Genome-Wide RNAi Screen to Identify Host Factors Involved in C. caviae Infection

(A) Schematic representation of the screening procedure. dsRNA were incubated with Drosophila SL2 cells for 3.5 d before incubation with C. caviae for
48 h. After fixation and staining, images were acquired using an automated microscope.
(B) Illustration of C. caviae growth inhibition phenotype that was selected in the primary screen for further analysis. Drosophila SL2 cells were incubated
with Tom40 dsRNA (Tom40 RNAi) or with buffer alone (No RNAi) for 3.5 d and were subsequently incubated with C. caviae for 48 h. The samples were
fixed and stained with the DNA dye Hoechst (DNA, blue) and a FITC-conjugated monoclonal C5þC8 antibody directed against MOMP and LPS (C. caviae,
green). Merge: overlay of the two images.
doi:10.1371/journal.ppat.0030155.g004
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and Methods). The cells were fixed 24 h post infection and the
number of inclusion forming units (IFUs) was determined
after assessment of the number of infected cells by
immonulabeling (Figure 8A). We observed a 2- to 3-fold
reduction in the production of infectious progeny upon
Tom40 or Tom22 depletion. On the contrary, a similar

number of infectious C. trachomatis were recovered from
control or Tom40- or Tom22-depleted cells (Figure 8B).
These results demonstrate that, as suggested by the

electron microscopy analysis, the reduction in the size of C.
caviae inclusions is accompanied with a decrease in the
number of infectious progeny produced. Altogether, our

Table 1. Host Factors Required for Optimal C. caviae Infection and Their Effect on L. monocytogenes Infection

Gene Symbol CG Number Predicted Biological Process Function Confirmed Inhibit Lm Infection

Pav CG1258 Cytoskeleton Microtubule-based movement 3 No

Act57B CG10067 Cytoskeleton Actin filament 3 Yes

Act5C CG4027 Cytoskeleton Actin filament 3 Yes

Act79B CG7478 Cytoskeleton Actin filament 3 Yes

Katanin-60 CG10229 Cytoskeleton Microtubule severing 2 No

Arc-p20 CG5972 Cytoskeleton Actin binding 2 Yes

CG11814 CG11814 Endodome and lysosome Lysosomal transport 3 Yes

CG5691 CG5691 Endodome and lysosome Lysosomal organization 3 Yes

Rab5 CG3664 Endodome and lysosome Endosome to lysosome transport 3 Yes

VhaAC39 CG2934 Endodome and lysosome v-ATPase V(0) 3 Yes

VhaPPA1–1 CG7007 Endodome and lysosome v-ATPase V(0) 3 Yes

CkIIbeta CG15224 Kinases and phosphatases Casein serine-threonine kinase 3 Yes

Tor CG5092 Kinases and phosphatases Kinase 3 Yes

ssh CG6238 Kinases and phosphatases Phosphatase/actin (de)polymerization 2 No

tws CG6235 Kinases and phosphatases Phosphatase type A2 2 No

CG16905 CG16905 Metabolism Fatty acid elongation 3 No

CG5844 CG5844 Metabolism Fatty acid beta oxydation 3 No

Gapdh2 CG8893 Metabolism Glycolysis 3 No

desat1 CG5887 Metabolism Fatty acid desaturation 3 Yes

Pde9 CG32648 Metabolism Cyclic nucleotide metabolism 2 No

Pect CG5547 Metabolism Ethanolamine and derivative metabolism 2 No

Pfk CG4001 Metabolism Glycolysis 2 No

CG3523 CG3523 Metabolism Fatty acid synthase 2 Yes

dpr8 CG32600 Miscellaneous Adhesion molecule 3 No

ERR CG7404 Miscellaneous Estrogen-related receptor 3 No

gig CG6975 Miscellaneous GTPase regulator 3 No

l(1)G0060 CG3125 Miscellaneous Cell adhesion 3 No

Dlp CG32146 Miscellaneous Glypican 3 No

Mask CG33106 Miscellaneous Multiple ankyrin repeats 3 No

Obp99a CG18111 Miscellaneous Odorant binding 3 No

Tsc1 CG6147 Miscellaneous Signal transduction 3 No

smt3 CG4494 Miscellaneous Protein modification 3 Yes

th CG12284 Miscellaneous Negative regulator of apoptosis 3 Yes

CG7974 CG7974 Miscellaneous Hepatocellular carcinoma–associated Ag59 2 No

Chit CG5210 Miscellaneous Glycosyl hydrolase family 2 No

Cyp4d8 CG4321 Miscellaneous Cytochrome P450 2 No

Hsc70–4 CG4264 Mitochondria Chaperone 3 No

Hsc70–5 CG8542 Mitochondria Protein targeting to mitochondria 3 No

mge CG14981 Mitochondria Protein targeting to mitochondria 3 No

Tom40 CG12157 Mitochondria Protein targeting to mitochondria 3 No

CG3731 CG3731 Mitochondria Mitochondrial-processing peptidase 3 No

Tim9a CG1660 Mitochondria Protein targeting to mitochondria 2 No

CG17922 CG17922 Transporter Potassium transport 2 No

CG30035 CG30035 Transporter Glucose transporter 2 No

CG31729 CG31729 Transporter Lipid/cation transport 2 No

alphaCop CG7961 Vesicular trafficking COP vesicle coat 3 Yes

Arf102F CG11027 Vesicular trafficking GTPase activity 3 Yes

betaCop CG6223 Vesicular trafficking COP vesicle coat 3 Yes

Beta’Cop Vesicular trafficking COP vesicle coat 3 Yes

cdc42 CG12530 Vesicular trafficking GTPase activity 3 Yes

gamma cop CG1528 Vesicular trafficking COPI vesicle coat 3 Yes

Rab11 CG5771 Vesicular trafficking Rab GTPase activity 3 Yes

Rab35 CG9575 Vesicular trafficking Rab GTPase activity 3 Yes

zetacop CG3948 Vesicular trafficking COPI vesicle coat 3 Yes

100 newly synthesized dsRNA from eight functional categories were used to confirm the phenotype observed in the primary screen (see Table S1). The table lists the 54 candidates for
whom the phenotype was confirmed in three (3) or two (2) out of the three independent replicates. The last column indicates whether the knock down of candidate expression had an
effect (Yes) or not (No) on Listeria infection indicate when tested in secondary screens.
doi:10.1371/journal.ppat.0030155.t001
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results indicate that depletion of members of the Tom
complex in mammalian cells have a detrimental effect on C.
caviae intracellular replication, which impairs bacterial
replication and differentiation. Since Tom40 or Tom22
depletion had no effect on C. trachomatis infection, our results
also indicate that the mechanism involved is C. caviae–specific.

Discussion

Chlamydia infections represent an enormous burden to
human health, and although some of the host cellular
processes targeted by Chlamydia have been identified, most
of the factors involved in the infection process remained to
be identified. This paucity of knowledge is mainly due to the
fact that Chlamydia is not genetically tractable and to the
difficulty of conducting genetic approaches in the mamma-
lian host. Drosophila has recently emerged as a powerful

alternative model to dissect microbial pathogenesis, and we
show here that Drosophila SL2 cells constitute a viable model
to study Chlamydia infection and identify host factors involved
in the infection process.

C. caviae Replication in Drosophila Cells
We demonstrated that, similar to the situation in mamma-

lian cells [8], infectious forms (EB) of C. caviae enter Drosophila
SL2 cells, differentiate into the replicative form (RB),
replicate within a membrane-bound compartment, and
differentiate back from RBs to EBs.
A previous report showed that different serovars of C.

trachomatis, including C. trachomatis LGV serovar L2, could
initiate their developmental cycle in Drosophila S2 cells [30].
However, the later stages of the developmental cycle were not
achieved. Similarly, we found that when Drosophila SL2 cells
were incubated with C. trachomatis LGV serovar L2 most cells

Figure 6. Tom40 and Tom22 Depletion Reduce C. caviae Infection of Mammalian Cells

(A) HeLa 229 cells were transfected for 3 d with a CDH1 control siRNA (Ctrl), or four siRNA duplexes against Tom40 or Tom22 either pooled (Mix) or
individually (1, 2, 3, 4) and analyzed by immunoblotting using antibodies directed against Tom40, Tom22, or actin.
(B and C) Immunofluorescence images of HeLa 229 cells transfected for 3 d with CDH1, Tom40, or Tom22 siRNA and subsequently incubated for 24 h
with C. caviae. After fixation the cells were stained with the DNA dye Hoechst (DNA, blue) and polyclonal antibodies against C. caviae (C. caviae, green).
Merge: overlay of the two images. (B) Low magnification images (103). (C) High magnification images (1003).
(D) Quantification of the percentage of large C. caviae inclusions upon CDH1, Tom40, or Tom22 siRNA. Inclusions were defined as objects whose size
ranged from 10 to 150 lm2. Objects whose size ranged from 30 to 150 lm2 were defined as large inclusions. Mix: pool of four siRNAs; 1, 2, 3, 4:
individual siRNA.
doi:10.1371/journal.ppat.0030155.g006
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were also infected 1 h post infection. However, the pattern of
staining did not change over a 72-h period post infection and
the cells never displayed large perinuclear inclusions (not
shown), confirming that C. trachomatis developmental cycle is
not complete in Drosophila SL2 cells.

We noticed a difference in the morphology of C. caviae
inclusion in Drosophila cells compared to mammalian cells.
The inclusions appear multilobed in mammalian cells [46],
whereas they appeared as a single membrane-bound com-
partment in Drosophila SL2 cells. This morphology resembles
that of C. trachomatis inclusions that are known to undergo
homotypic fusion and are therefore monovacuolar. This
observation suggests that C. caviae inclusions may also
undergo homotypic fusion in Drosophila SL2 cells.

IncA, a type III secretion (TSS) substrate known to be in
involved in the homotypic fusion of the C. trachomatis
inclusions [47], was present on the surface of C. caviae
inclusion in Drosophila SL2 cells. Since IncA from C. caviae
can interact with itself [48], it is possible that in Drosophila SL2

cells it participates to the biogenesis of a single large
inclusion. If it is the case, some Drosophila factors probably
interact with IncA and help promote the fusion. However,
one cannot exclude that in Drosophila cells the homotypic
fusion of C. caviae inclusions is IncA independent.

Host Factors Identified in RNAi Screen
Using the Drosophila cell / C. caviae model system, we have

performed an RNAi screen and identified 54 host factors that,
when depleted, reduced C. caviae infection. By testing the
effect of the candidates’ knock down on L. monocytogenes
infection, we have identified candidates presumably specific
of C. caviae infection. In the following section, we discuss their
potential relevance in Chlamydia pathogenesis.
The attachment of most Chlamydia species to the host cell is

dependent on host cell heparan sulfate glycosaminoglycans
(GAGs) [15]. C. caviae is no exception, because its adhesion is
GAG dependent and can be blocked by heparin [49].
Drosophila contains two main glypicans: Dally (Division
abnormally delayed) [50] and Dlp (Dally-like protein)

Figure 7. Tom40 Depletion Affects C. caviae Inclusion Size and Differentiation into EBs

Electron micrographs of HeLa229 cells depleted for CDH1 (top panels, CDH1 siRNA) or Tom40 (bottom panels, Tom40 siRNA) 24 h post C. caviae
infection. Representative images of small (left panels) and large (right panels) inclusions are shown. Bar: 2 lM.
doi:10.1371/journal.ppat.0030155.g007

Figure 8. Tom40 and Tom22 Depletion Reduces the Production of C. caviae, but Not C. trachomatis, Infectious Progeny

Quantification of the infectivity of C. caviae (A) or C. trachomatis (B) progeny isolated from CDH1 or Tom40- or Tom22-depleted cells. The progeny was
isolated 48 h post infection and dilutions were incubated with fresh HeLa 229 cells for 24 h. After fixation and staining, the IFUs/ml was determined by
assessment of the number of infected cells. Cc: C. caviae; CtL2: C. trachomatis.
doi:10.1371/journal.ppat.0030155.g008
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[51,52]. They are composed of cell-surface heparan sulfate
proteoglycans linked to the plasma membrane by a glycosyl
phosphatidylinositol linker. Our screen showed that the
knock down of Dlp reduced C. caviae infection, suggesting
that Dlp may promote the attachment of C. caviae to the cell
surface.

Activation of Rho family of GTPases and actin remodeling
has also been implicated in Chlamydia entry [15]. For example,
Cdc42 and actin polymerization are involved in C. caviae entry
of mammalian cells [53], and we show here that their
depletion also reduced infection of Drosophila cells. Rac1,
which is also involved in C. caviae entry in mammalian cells
[53], was not identified in our screen. The Drosophila genome
contains two rac genes, and it is possible that the single knock
down of one or the other was not sufficient to block C. caviae
entry. In addition, we also identified Ssh, a phosphatase that
controls actin reorganization through the dephosphorylation
of cofilin [54]. Ssh was not previously reported to play a role
in Chlamydia pathogenesis, but our data suggest that it may be
implicated in regulating actin dynamics upon entry of C.
caviae.

After their internalization, C. trachomatis EBs direct the
nascent inclusion to a peri nuclear area. This movement is
dependent of microtubules and the motor dynein [16].We
have identified two candidates that are linked to motors and
microtubules. The first candidate, pav, encodes a kinesin-like
protein [55]. Although kinesin is not involved in the
trafficking of C. trachomatis inclusion to the peri nuclear area
[16], the microinjection of antibodies against kinesin prevents
the recruitment of mitochondria to C. psittaci inclusions and
delays the developmental cycle [56]. A defect in mitochondria
recruitment to the inclusion may therefore explain the
phenotype observed upon pav knock down in Drosophila cells.
The potential importance of mitochondria in Chlamydia
infection will be further discussed in the following section.
The second candidate related to microtubule is katanin-60. In
mammalian cells, katanin concentrates at the centrosome of
the cell, where the p60 subunit exerts its microtubule severing
activity and induces the release of microtubules from the
centrosome [57]. C. trachomatis inclusions associate with
centrosomes [58]. It is possible that Chlamydia interacts with
the centrosome and induces a katanin-mediated local
destabilization of the microtubule network, thus allowing
the expansion of the inclusion.

A recent study revealed a dynamic interaction between
multi-vesicular body–derived constituents and C. trachomatis
inclusion [59]. We have identified two candidates involved in
lysosomal transport (CG11814) and organization (CG5691), as
well as two subunits of the v-ATPase (VhaAC39 and
VhaPPA1–1). The identification of such factors suggests that,
at some point during the developmental cycle, Chlamydia
inclusions may interact with compartments of the endocytic
pathway. Further analysis of theses candidates may shed light
on the mechanism involved.

C. trachomatis inclusion also intercepts vesicles and lipids
from the Golgi [18] and targets lipid droplets [20]. We have
identified several enzymes involved in fatty acid synthesis,
desaturation, elongation, and oxidation. The identification of
such enzymes reinforces the idea that the acquisition of lipids
is an important aspect of Chlamydia intracellular replication,
and further investigation may shed light on the host
metabolism pathways targeted by Chlamydia.

Chlamydia and the Tom Complex
Our screen revealed that the knock down of members of

the Tim-Tom complex, the multiprotein complex involved in
the recognition and import of nuclear-encoded mitochon-
drial proteins to the mitochondria [45,60], inhibited C. caviae
infection in Drosophila cells. Importantly, we have shown that
the knock down of two major components of the outer
membrane complex of mitochondria, Tom40 and Tom22,
also inhibited C. caviae infection in mammalian cells. In the
following section we discuss potential mechanisms that may
explain the phenotype observed.
Metabolism. Mitochondria are involved in carbohydrate

and lipid metabolism. Depletion of Tom complex compo-
nents in mitochondria may lead to the reduction of the
intracellular ATP pool and interfere with C. caviae infection.
Although Chlamydia species have the capacity to produce their
own ATP [61], they also encode ATP transporters [62–64],
suggesting that Chlamydia may utilize host cell ATP. In
agreement with this assumption, it has been reported that
Chlamydia infection leads to an increase in ATP production
[65]. Using a Luminescent Cell Viability Assay (Promega), we
have shown that the intracellular ATP levels were comparable
in control, Tom40-, or Tom22-depleted cells (between 1,500
and 2,000 luminescence arbitrary units / 384 well) (not
shown). This result suggests that production of energy is
not dramatically affected upon depletion of Tom40 or
Tom22. Moreover, addition of extra glucose up to 20 g/l, to
increase the source of energy available, did not rescue the
phenotype (not shown). Finally, Listeria infection, which
requires ATP for the bacteria to polymerize actin and spread
from cell to cell, was not affected (not shown), but most
importantly, a similar amount of C. trachomatis infectious
progeny was recovered from control or Tom40- or Tom22-
depleted cells, suggesting that the C. trachomatis developmen-
tal cycle was not affected (Figure 8B). Taken together, these
results suggest that energy depletion does not account for the
phenotype observed.
Apoptosis. Mitochondria play an important role in the

control of apoptotic events, and Chlamydia inhibits apoptosis
of the host cell by a mechanism that prevents mitochondrial
release of cytochrome c [21,22]. The depletion of members of
the Tom complex could interfere with this process and
therefore affect C. caviae replication. However, Tom40- or
Tom22-depleted cells infected with C. caviae did not display
the characteristic condensed nuclear morphology of apop-
totic cells (Figures 6B, 6C, and 7). This result suggests that
premature cell death of the infected cells is not responsible
for the inhibition of C. caviae infection.
Mitochondria recruitment to the inclusion. It was previ-

ously shown that mitochondria are associated with C. caviae
inclusions but not C. trachomatis inclusions [66,67]. We
therefore investigated whether mitochondria were still
recruited to the C. caviae inclusions in Tom40-depleted cells
(Figure S1). Our results indicate that mitochondria were
found in vicinity (,50 nM) of 8.5% of C. caviae inclusion
membrane in control cells. Consistent with the specific
recruitment of mitochondria to the inclusion membrane,
only 1% of the nuclear membrane was covered with
mitochondria. In Tom40-depleted cells, mitochondria were
found in the vicinity of 5.8% of C. caviae inclusion membrane.
Further experiments will be required to determine whether
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this slight reduction in mitochondria recruitment may
account for the inhibition of C. caviae infection in Tom40-
depleted cells.

Import of bacterial effectors. Finally, it was previously
shown that two enteropathogenic E. coli type III effectors,
EspF and Map, are recognized and imported to the
mitochondria through the Tim-Tom complex [68,69]. It is
therefore possible that similar C. caviae type III effectors are
targeted to the mitochondria via the Tom complex. Depletion
of Tom complex components may therefore interfere with C.
caviae ability to specifically modulate mitochondrial functions
and impair the intracellular replication of the bacteria.
Identification of such effectors, possibly through their
mitochondria targeting sequence, and their further charac-
terization might shed light on the significance of the
association C. caviae inclusion with the mitochondria.

In conclusion, we have used Drosophila as a model system to
identify host factors important in C. caviae replication. By
comparative analysis, we have identified factors that are
probably specific to Chlamydia pathogenesis and we validated
the effect of two candidates (Tom40 and Tom22) in
mammalian cells. Our results indicate that upon Tom 40 or
Tom22 depletion, C. caviae replication and differentiation is
lessened, whereas C. trachomatis infection is not affected.
Further investigations are under way to elucidate the specific
role of the Tom complex in C. caviae infection.

Supporting Information

Figure S1. Mitochondria Recruitment to C. caviae Inclusion
(A) Electron micrographs of HeLa229 cells depleted for CDH1 (left
panels, CDH1 siRNA) or Tom40 (right panels, Tom40 siRNA) 24 h

post C. caviae infection. Representative images of mitochondria
apposed to the inclusions membrane are shown. M: mitochondria. (B)
Quantification of the fraction of inclusion or nuclear membrane
covered with mitochondria (See Materials and Methods).

Found at doi:10.1371/journal.ppat.0030155.sg001 (4.8 MB TIF).

Table S1. Host Factors Required for Optimal C. caviae Infection
Identified in the Primary Screen

The gene name and the corresponding CG number of each
candidates identified in the primary screen are shown. The functional
categories were assigned based on gene ontology (GO) biological
function terms and the annotation is based on GO molecular
function, cellular component, or protein domains as indicated in
FlyBase (http://www.flybase.org/).

Found at doi:10.1371/journal.ppat.0030155.st001 (52 KB XLS).

Accession Numbers

The National Center for Biotechnology Information (http://www.ncbi.
nlm.nih.gov/) accession numbers for the mammalian genes are CDH1
(NM_004360), Tom40 (NM_006114), and Tom22 (NM_020243).
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